Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Vet Sci ; 11: 1369863, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605918

RESUMO

Introduction: This study focuses on evaluating the therapeutic efficacy of cecropin AD, an antimicrobial peptide, against H9N2 avian influenza virus (AIV) in chickens. Given the global impact of H9N2 AIV on poultry health, identifying effective treatments is crucial. Methods: To assess the impact of cecropin AD, we conducted in vivo experiments involving 108 5-week-old chickens divided into control, infected, and various treatment groups based on cecropin AD dosage levels (high, medium, and low). The methodologies included hemagglutination (HA) tests for viral titers, histopathological examination and toluidine blue (TB) staining for lung pathology, real-time PCR for viral detection, and enzyme-linked immunosorbent assays for measuring serum levels of inflammatory markers. Results: The findings revealed that cecropin AD substantially reduced lung pathology and viral load, especially at higher dosages, comparing favorably with the effects seen from conventional treatments. Moreover, cecropin AD effectively modulated mast cell activity and the levels of inflammatory markers such as IL-6, TNF-α, IFN-γ, and 5-HT, indicating its potential to diminish inflammation and viral spread. Discussion: Cecropin AD presents a significant potential as an alternative treatment for H9N2 AIV in chickens, as evidenced by its ability to lessen lung damage, decrease viral presence, and adjust immune responses. This positions cecropin AD as a promising candidate for further exploration in the management of H9N2 AIV infections in poultry.

2.
J Antimicrob Chemother ; 79(2): 417-428, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38267384

RESUMO

OBJECTIVES: The growing occurrence of bacterial resistance has spawned the development of novel antimicrobial agents. Antimicrobial peptides, a class of small molecules with antimicrobial activity, have been regarded as the ideal alternatives to antibiotics. METHODS: In this study, we amplified a new type of Zophobas atratus coleoptericin (denoted coleoptericin B) through rapid amplification of cDNA ends (RACE) PCR and expressed recombinant Z. atratus coleoptericin B (rZA-col B) by prokaryotic expression. Subsequently, we evaluated the antimicrobial effect and biocompatibility of rZA-col B in vivo, investigated its antimicrobial mechanism, and assessed its therapeutic effect in a murine model of mastitis caused by MDR Klebsiella pneumoniae. RESULTS: The in vivo studies demonstrated that rZA-col B possesses broad-spectrum antimicrobial activity against both Gram-positive and Gram-negative bacteria. It exhibited less than 1.5% haemolysis and 10% cytotoxicity, even at a concentration of 128 µM. Additionally, rZA-col B had a minimal risk of inducing drug resistance. Furthermore, rZA-col B could disrupt the integrity of bacterial membranes, induce membrane permeabilization and ultimately lead to bacterial death. Importantly, rZA-col B also alleviated mastitis caused by MDR K. pneumoniae in a murine model by enhancing bacterial clearance, reducing neutrophil infiltration, decreasing TNF-α and IL-1ß expression, and protecting the mammary barrier. CONCLUSIONS: rZA-col B may be a promising antibacterial agent to combat MDR bacterial infection.


Assuntos
Anti-Infecciosos , Mastite , Feminino , Camundongos , Animais , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Klebsiella pneumoniae , Modelos Animais de Doenças , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Peptídeos/farmacologia , Anti-Infecciosos/farmacologia , Mastite/tratamento farmacológico , Testes de Sensibilidade Microbiana
3.
iScience ; 26(9): 107538, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37636059

RESUMO

Liver fibrosis, a rising cause of chronic liver diseases, could eventually develop into cirrhosis and liver failure. Current diagnosis of liver fibrosis relies on pathological examination of hepatic tissues acquired from percutaneous biopsy, which may produce invasive injuries. Here, for non-invasive assessment of liver fibrosis, we applied comparative multi-omics in non-human primates (rhesus macaques) and subsequent serum biopsy in human patients. Global transcriptomics showed significant gene enrichment of metabolism process, in parallel with oxidative stress and immune responses in fibrotic primates. Targeted metabolomics were concordant with transcriptomic patterns, identifying elevated lipids and porphyrin metabolites during hepatic fibrosis. Importantly, liquid biopsy results validated that specific metabolites in the serum (e.g., biliverdin) were highly diagnostic to distinguish human patients from healthy controls. Findings describe the interconnected transcriptional and metabolic network in primate liver fibrosis and provide potential indices for non-invasive detection of liver fibrosis in humans.

4.
Animals (Basel) ; 13(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36670855

RESUMO

BACKGROUND: Reptiles are asymptomatic carriers of Salmonella spp. Reptile-associated Salmonella infections have been noticed as a significant contributor to overall human salmonellosis. However, it remains unclear regarding the prevalence of reptile-associated Salmonella in China. METHODS: Fecal and gastrointestinal mucosal samples were taken from 104 snakes, 21 lizards, and 52 chelonians and cultured on selective medium. The positive clones were validated and annotated by biochemical screening and multiplex PCR verification. In addition, the antibiotic resistance of identified Salmonella isolates was detected and followed by cytotoxic activity detection on human colon cells via co-culturation. RESULTS: The overall prevalence of Salmonella in reptiles was 25.99%, with rates of 30.77%, 47.62%, and 7.69% in snakes, lizards, and chelonians, respectively. Further, all isolates showed variable drug-resistant activity to 18 antibiotics, of which 14 strains (30.43%) were resistant to more than eight kinds of antibiotics. More than half of isolated Salmonella strains were more toxic to host cells than the standard strain, SL1344. Whole genome sequencing (WGS) results showed that all lizard-associated strains belong to 4 serovar types, and 7 of them fall into the highly pathogenic serovars "Carmel" and "Pomona." CONCLUSIONS: Our results highlight the potential threat of zoonotic salmonellosis from captive reptiles in the Beijing area of China.

5.
Front Immunol ; 14: 1290182, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38162646

RESUMO

Introduction: Cecropin AD (CAD), a renowned antimicrobial peptide, has shown promising potential in treating various bacterial infections. This study investigates the protective effects of CAD against lipopolysaccharide (LPS)-induced intestinal adversities in chickens. Methods: Sixty SPF-grade chicks were divided into groups and exposed to different dosages of CAD, followed by LPS administration. The study assessed the impact of CAD on intestinal mucosal injury markers, oxidative stress, and inflammation. Results: LPS significantly increased Diamine oxidase (DAO) and D-lactate (D-LA) levels, both indicators of intestinal mucosal injury. CAD treatment substantially attenuated these elevations, particularly at higher dosages. Additionally, CAD markedly reduced oxidative stress in intestinal tissues, as shown by normalized antioxidant levels and decreased reactive oxygen species. Histological analysis supported these findings, showing better-preserved villi structures in CAD-treated groups. Furthermore, CAD significantly reduced IL-6 and IL-8 expression post-LPS stimulation and effectively regulated the NLRP3 inflammasome pathway, decreasing associated factors like NLRP3, Caspase-1, IL-1b, and IL-18. Discussion: The study demonstrates CAD's therapeutic potential in alleviating LPS-induced intestinal injuries. The protective effects are primarily attributed to its anti-inflammatory and antioxidative actions and modulation of the NLRP3 inflammasome pathway.


Assuntos
Cecropinas , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Lipopolissacarídeos/toxicidade , Galinhas/metabolismo , Antioxidantes/farmacologia
6.
Int J Mol Sci ; 23(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35563007

RESUMO

The widespread prevalence of antimicrobial resistance has spawned the development of novel antimicrobial agents. Antimicrobial peptides (AMPs) have gained comprehensive attention as one of the major alternatives to antibiotics. However, low antibacterial activity and high-cost production have limited the applications of natural AMPs. In this study, we successfully expressed recombinant Zophobas atratus (Z. atratus) defensin for the first time. In order to increase the antimicrobial activity of peptide, we designed 5 analogues derived from Z. atratus defensin, Z-d13, Z-d14C, Z-d14CF, Z-d14CR and Z-d14CFR. Our results showed that Z-d14CFR (RGCRCNSKSFCVCR-NH2) exhibited a broad-spectrum antimicrobial activity to both Gram-positive bacteria and Gram-negative bacteria, including multidrug-resistant bacteria. It possessed less than 5% hemolysis and 10% cytotoxicity, even at a high concentration of 1 mg/mL. Antimicrobial mechanism studies indicated that Z-d14CFR performed antimicrobial effect via inhibiting biofilm formation, disrupting bacterial membrane integrity and inducing cellular contents release. Furthermore, Z-d14CFR showed a great therapeutic effect on the treatment of multidrug-resistant Escherichia coli (E. coli) infection by enhancing bacterial clearance, decreasing neutrophils infiltration and the expression of tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1ß) in a murine model of mastitis. Our findings suggest that Z-d14CFR could be a promising candidate against multidrug-resistant bacteria.


Assuntos
Anti-Infecciosos , Defensinas , Mastite , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Infecciosos/farmacologia , Peptídeos Antimicrobianos/farmacologia , Bactérias , Biofilmes , Defensinas/farmacologia , Modelos Animais de Doenças , Escherichia coli , Feminino , Mastite/tratamento farmacológico , Camundongos , Testes de Sensibilidade Microbiana , Peptídeos/farmacologia
7.
Vet Sci ; 8(12)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34941846

RESUMO

Staphylococci are the most common pathogens isolated from skin infections in livestock or companion animals. Antibiotic therapy is the best treatment for infections, but local or systemic use of antimicrobials increases the risk of bacterial resistance. Insects are rich in antimicrobial peptides, which can reduce bacterial resistance and can be used to treat bacterial infections after skin burns. We propose that the use of the darkling beetle (Z. morio) hemolymph to treat skin infections in mice by Staphylococcus haemolyticus is one of the alternatives. Z. morio hemolymph alleviated the increase in wound area temperature in mice with a skin infection, reduced the bacterial load of the wound, and accelerated the wound healing speed significantly. Pathological sections showed that Z. morio hemolymph can significantly reduce inflammatory cell infiltration, and promote skin tissue repair. Real-time fluorescent quantitative polymerase chain reaction (PCR) revealed that the Z. morio hemolymph can significantly reduce the levels of pro-inflammatory cytokines, including interleukin-1 beta (IL-1ß), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and chemokine interleukin-8 (IL-8). Our findings suggest that Z. morio antibacterial hemolymph can promote wound contraction, relieve local inflammatory responses and promote wound healing in mice infected with a heat injury, which has a positive therapeutic effect and enormous potential for skin thermal injury.

8.
Vet Microbiol ; 259: 109084, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34153721

RESUMO

Bovine viral diarrhea virus (BVDV), a major infectious pathogen and is associated with major economic losses and significant impact on animal welfare worldwide. Here, recombinant Erns-LTB protein vaccine containing MF59 adjuvant was prepared and assessed using a mouse model. The recombinant plasmid (pET32a-Erns-LTB) was constructed and transformed into BL21 (DE3) cells to produce Erns-LTB protein. The Erns-LTB protein was formulated with MF59 adjuvant, when delivered intraperitoneally in mice, exhibited higher immunogenic and induced superior levels of anti-BVDV IgG compared with the MF59 adjuvanted Erns protein. Importantly, after challenged with different BVDV BJ175170 and BJ1305 isolate strains, mice inoculated with Erns-LTB protein displayed alleviated pathological damage and decreased plasma virus shedding compared with mice inoculated with Erns protein. The enhanced protection from Erns-LTB protein is mediated by T cell immunity and primarily based on CD4+ T helper (Th) and CD8+ cytotoxic T lymphocyte (CTL), these results suggest that Erns-LTB protein has potential to protect against a broad range of BVDV strains thereby providing a novel direction for developing broadly protective vaccines.


Assuntos
Anticorpos Antivirais/sangue , Doença das Mucosas por Vírus da Diarreia Viral Bovina/prevenção & controle , Vírus da Diarreia Viral Bovina/imunologia , Imunização/veterinária , Vacinas Virais/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Anticorpos Neutralizantes/sangue , Doença das Mucosas por Vírus da Diarreia Viral Bovina/imunologia , Bovinos , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/prevenção & controle , Doenças dos Bovinos/virologia , Citocinas/imunologia , Feminino , Imunidade Celular , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/genética , Eliminação de Partículas Virais
9.
Nucleic Acids Res ; 49(D1): D160-D164, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-32833025

RESUMO

Many studies have indicated that non-coding RNA (ncRNA) dysfunction is closely related to numerous diseases. Recently, accumulated ncRNA-disease associations have made related databases insufficient to meet the demands of biomedical research. The constant updating of ncRNA-disease resources has become essential. Here, we have updated the mammal ncRNA-disease repository (MNDR, http://www.rna-society.org/mndr/) to version 3.0, containing more than one million entries, four-fold increment in data compared to the previous version. Experimental and predicted circRNA-disease associations have been integrated, increasing the number of categories of ncRNAs to five, and the number of mammalian species to 11. Moreover, ncRNA-disease related drug annotations and associations, as well as ncRNA subcellular localizations and interactions, were added. In addition, three ncRNA-disease (miRNA/lncRNA/circRNA) prediction tools were provided, and the website was also optimized, making it more practical and user-friendly. In summary, MNDR v3.0 will be a valuable resource for the investigation of disease mechanisms and clinical treatment strategies.


Assuntos
Bases de Dados de Ácidos Nucleicos , MicroRNAs/genética , Neoplasias/genética , RNA Circular/genética , RNA não Traduzido/genética , Animais , Humanos , Internet , Mamíferos , MicroRNAs/classificação , MicroRNAs/metabolismo , Anotação de Sequência Molecular , Neoplasias/classificação , Neoplasias/metabolismo , Neoplasias/patologia , RNA Circular/classificação , RNA Circular/metabolismo , RNA não Traduzido/classificação , RNA não Traduzido/metabolismo , Software
10.
Microorganisms ; 8(10)2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32998225

RESUMO

Coliforms and Staphylococcus spp. infections are the leading causes of bovine mastitis. Despite extensive research and development in antibiotics, they have remained inadequately effective in treating bovine mastitis induced by multiple pathogen infection. In the present study, we showed the protective effect of Zophobas morio (Z. morio) hemolymph on bovine mammary epithelial cells against bacterial infection. Z. morio hemolymph directly kills both Gram-positive and Gram-negative bacteria through membrane permeation and prevents the adhesion of E. coli or the clinically isolated S. simulans strain to bovine mammary epithelial (MAC-T) cells. In addition, Z. morio hemolymph downregulates the expression of nucleotide-binding oligomerization domain (NOD)-like receptor family member pyrin domain-containing protein 3 (NLRP3), caspase-1, and NLRP6, as well as inhibits the secretion of interleukin-1ß (IL-1ß) and IL-18, which attenuates E. coli or S. simulans-induced pyroptosis. Overall, our results suggest the potential role of Z. morio hemolymph as a novel therapeutic candidate for bovine mastitis.

11.
Vaccine ; 38(22): 3881-3891, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32280039

RESUMO

To obtain an effective vaccine candidate against bovine viral diarrhea virus (BVDV) disease which causes great economical loss in cattle industries, recombinant Erns-E2 protein vaccine containing MF59 and CPG-ODN adjuvants was prepared and assessed in this study. The recombinant plasmid (pET32a-Erns-E2) was constructed and transformed into BL21 (DE3) cells to produce Erns-E2 protein. We immunized mice with the MF59-and CPG-ODN-adjuvanted recombinant Erns-E2 protein, E2 protein, or Erns protein, respectively. To evaluate immunogenicity and efficacy of a vaccine-adjuvant combination, mice were challenged with BVDV BJ175170 strain after immunization. All adjuvanted vaccines elicited detectable humoral and cellular immune responses, the BVDV-specific antibody titers as well as interleukin 4 (IL-4) levels in sera of mice immunized with the recombinant Erns-E2 protein were higher than in those of mice immunized with either the recombinant Erns or E2 protein. Besides, immunization with the Erns-E2 vaccines induced higher percentage of CD4+IFN-γ+, CD8+IFN-γ+ T cells and CD3+TNF-α+ T cells compared with the other vaccines. More protective efficacy against BVDV infection was acquired in the mice treated with the recombinant Erns-E2 protein, as shown by a reduction of viremia and slight pathological changes compared with both the control mice and the other vaccinated mice. Our findings suggest that the use of the recombinant Erns-E2 protein vaccine formulated with MF59 and CPG-ODN adjuvants enhances T cell responses and viral control, which warrants the Erns-E2 protein vaccine-adjuvant combination could be as a vaccine strategy to against BVDV.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Doença das Mucosas por Vírus da Diarreia Viral Bovina/prevenção & controle , Linfócitos T/imunologia , Proteínas do Envelope Viral/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais , Bovinos , Vírus da Diarreia Viral Bovina/imunologia , Camundongos , Oligodesoxirribonucleotídeos/administração & dosagem , Polissorbatos/administração & dosagem , Proteínas Recombinantes/imunologia , Esqualeno/administração & dosagem
12.
FEBS Lett ; 593(18): 2646-2654, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31260103

RESUMO

In prokaryotes, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated protein (Cas) systems constitute adaptive immune systems against mobile genetic elements (MGEs). Here, we introduce the Markov cluster algorithm (MCL) to Makarova et al.'s method in order to select a more reasonable profile. Additionally, our new Maximum Continuous Cas Subcluster (MCCS) method helps identification of tightly clustered loci. The comparison with two other commonly used programs shows that the method could identify Cas proteins with higher accuracy and lower Additional Prediction Rate (APR). Moreover, we developed a web-based server, CasLocusAnno (http://cefg.uestc.cn/CasLocusAnno), capable of annotating Cas proteins, cas loci and their (sub)types less than ~ 28 s following the whole proteome sequence submission. Its standalone version can be downloaded at https://github.com/RiversDong/CasLocusAnno.


Assuntos
Proteínas Associadas a CRISPR/genética , Biologia Computacional/métodos , Loci Gênicos/genética , Internet , Anotação de Sequência Molecular/métodos
13.
Peptides ; 114: 1-7, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30954534

RESUMO

Apelin, a new identified adipokine, and its G protein-coupled receptor named APJ are widely expressed in various tissues. Apelin has been found to play important roles in the physiopathology of multiple diseases. Our aim is to assess the effect of long-term apelin treatment on serum insulin level and pancreatic islet beta-cell mass in the late stage of type 2 diabetes without hyperinsulinemia and to investigate the role of apelin in myocardial fatty acid and glucose metabolism. In the present study, the high-fat diet fed-streptozotocin-induced experimental type 2 diabetic rats were given once daily intraperitoneal injection of apelin-13 (0.1 µmol/kg) for 10 weeks. We observed that apelin significantly improved serum insulin reduction and reduced hyperglycemia. Histologic analysis showed that long-term apelin treatment significantly increased pancreatic islet beta cell mass. Exogenous apelin failed to change dyslipidaemia of type 2 diabetic rats. Apelin treatment markedly decreased elevated myocardial FFA and glycogen content. Treatment of type 2 diabetic rats with apelin markedly reduced increased gene expressions of the cardiac fatty acid transporter CD36, CPT-1, and Peroxisome proliferator-activated receptor (PPAR)-α. Whereas the gene levels of citrate synthase and peroxisome proliferator-activated receptor γ coactivator 1-α (PGC1-α), a transcriptional coactivator, mediating mitochondrial biogenesis in heart were unaltered in response to exogenous apelin. Taken together, longer-term apelin treatment prevented pancreatic beta-cell loss or failure in experimental type 2 diabetic rats. Apelin can regulate myocardial metabolism. Apelin reduced myocadial fatty acid uptake and oxidation through inhibiting PPAR-α but did not affect myocardial mitochondrial biogenesis in type 2 diabetic rats.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Ácidos Graxos/metabolismo , Glucose/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/etiologia , Diabetes Mellitus Tipo 2/etiologia , Dieta Hiperlipídica/efeitos adversos , Dislipidemias/tratamento farmacológico , Dislipidemias/metabolismo , Insulina/sangue , Masculino , Miocárdio/metabolismo , Ratos Wistar
14.
Parasit Vectors ; 12(1): 182, 2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-31023355

RESUMO

BACKGROUND: Pattern recognition receptors (PRRs) can recognize pathogen-associated molecular patterns and activate downstream signalling pathways, resulting in modulation of host immunity against pathogens. Here, we investigated whether PRR-mediated recognition is involved in host immune responses to the blood-feeding nematode Haemonchus contortus. METHODS: During blood-feeding, H. contortus secretes immune-modulating antigens into host blood. Therefore, we stimulated sheep peripheral blood mononuclear cells (PBMCs) with H. contortus soluble extract (HcAg) and performed transcriptional profiling. RESULTS: HcAg upregulated two genetically linked CLRs (CLEC2L and KLRG2), two NLRs attenuating inflammation (NLRP12 and NLRC3) and one G protein-coupled receptor with potent anti-inflammatory effects (HCAR2). Furthermore, several Th2-related transcription factors (ATF3, IRF4, BCL3 and NFATC) were also upregulated, which may confer anti-inflammatory type 2 immune responses to HcAg. CONCLUSIONS: Together, our preliminary studies provide new insights into how the host innate immune system controls type 2 immunity to H. contortus. Further work will be needed to identify H. contortus products recognized by the host innate immune system and determine the Th2 polarization ability of these putative PRR ligands.


Assuntos
Hemoncose/veterinária , Haemonchus/química , Proteínas de Helminto/farmacologia , Imunidade Inata , Leucócitos Mononucleares/imunologia , Extratos de Tecidos/farmacologia , Animais , Antígenos de Helmintos/imunologia , Perfilação da Expressão Gênica , Hemoncose/sangue , Proteínas de Helminto/imunologia , Interações Hospedeiro-Patógeno , Leucócitos Mononucleares/parasitologia , Proteínas NLR/genética , Receptores de Reconhecimento de Padrão/genética , Receptores de Reconhecimento de Padrão/imunologia , Ovinos , Doenças dos Ovinos/imunologia , Doenças dos Ovinos/parasitologia , Fatores de Transcrição/genética
15.
Front Microbiol ; 10: 184, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30814982

RESUMO

The in-depth study of viral genomes is of great help in many aspects, especially in the treatment of human diseases caused by viral infections. With the rapid accumulation of viral sequencing data, improved, or alternative gene-finding systems have become necessary to process and mine these data. In this article, we present Vgas, a system combining an ab initio method and a similarity-based method to automatically find viral genes and perform gene function annotation. Vgas was compared with existing programs, such as Prodigal, GeneMarkS, and Glimmer. Through testing 5,705 virus genomes downloaded from RefSeq, Vgas demonstrated its superiority with the highest average precision and recall (both indexes were 1% higher or more than the other programs); particularly for small virus genomes (≤ 10 kb), it showed significantly improved performance (precision was 6% higher, and recall was 2% higher). Moreover, Vgas presents an annotation module to provide functional information for predicted genes based on BLASTp alignment. This characteristic may be specifically useful in some cases. When combining Vgas with GeneMarkS and Prodigal, better prediction results could be obtained than with each of the three individual programs, suggesting that collaborative prediction using several different software programs is an alternative for gene prediction. Vgas is freely available at http://cefg.uestc.cn/vgas/ or http://121.48.162.133/vgas/. We hope that Vgas could be an alternative virus gene finder to annotate new genomes or reannotate existing genome.

16.
Front Microbiol ; 9: 2948, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30581420

RESUMO

Understanding how proteins evolve is important, and the order of amino acids being recruited into the genetic codons was found to be an important factor shaping the amino acid composition of proteins. The latest work about the last universal common ancestor (LUCA) makes it possible to determine the potential factors shaping amino acid compositions during evolution. Those LUCA genes/proteins from Methanococcus maripaludis S2, which is one of the possible LUCA, were investigated. The evolutionary rates of these genes positively correlate with GC contents with P-value significantly lower than 0.05 for 94% homologous genes. Linear regression results showed that compositions of amino acids coded by GC-rich codons positively contribute to the evolutionary rates, while these amino acids tend to be gained in GC-rich organisms according to our results. The first principal component correlates with the GC content very well. The ratios of amino acids of the LUCA proteins coded by GC rich codons positively correlate with the GC content of different bacteria genomes, while the ratios of amino acids coded by AT rich codons negatively correlate with the increase of GC content of genomes. Next, we found that the recruitment order does correlate with the amino acid compositions, but gain and loss in codons showed newly recruited amino acids are not significantly increased along with the evolution. Thus, we conclude that GC content is a primary factor shaping amino acid compositions. GC content shapes amino acid composition to trade off the cost of amino acids with bases, which could be caused by the energy efficiency.

17.
Environ Microbiol ; 20(10): 3836-3850, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30187624

RESUMO

To better understand the mechanisms of bacterial adaptation in oxygen environments, we explored the aerobic living-associated genes in bacteria by comparing Clusters of Orthologous Groups of proteins' (COGs) frequencies and gene expression analyses and 38 COGs were detected at significantly higher frequencies (p-value less than 1e-6) in aerobes than in anaerobes. Differential expression analyses between two conditions further narrowed the prediction to 27 aerobe-specific COGs. Then, we annotated the enzymes associated with these COGs. Literature review revealed that 14 COGs contained enzymes catalysing oxygen-involved reactions or products involved in aerobic pathways, suggesting their important roles for survival in aerobic environments. Additionally, protein-protein interaction analyses and step length comparisons of metabolic networks suggested that the other 13 COGs may function relevantly with the 14 enzymes-corresponding COGs, indicating that these genes may be highly associated with oxygen utilization. Phylogenetic and evolutionary analyses showed that the 27 COGs did not have similar trees, and all suffered purifying selection pressures. The divergent times of species containing or lacking aerobic COGs validated that the appearing time of oxygen-utilizing gene was approximately 2.80 Gyr ago. In addition to help better understand oxygen adaption, our method may be extended to identify genes relevant to other living environments.


Assuntos
Bactérias/enzimologia , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Oxigênio/metabolismo , Aerobiose , Bactérias/classificação , Bactérias/genética , Proteínas de Bactérias/genética , Evolução Molecular , Redes e Vias Metabólicas , Filogenia
18.
Genome Biol Evol ; 10(8): 2072-2085, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30060177

RESUMO

Pandemic cholera is a major concern for public health because of its high mortality and morbidity. Mutation accumulation (MA) experiments were performed on a representative strain of the current cholera pandemic. Although the base-pair substitution mutation rates in Vibrio cholerae (1.24 × 10-10 per site per generation for wild-type lines and 3.29 × 10-8 for mismatch repair deficient lines) are lower than that previously reported in other bacteria using MA analysis, we discovered specific high rates (8.31 × 10-8 site/generation for wild-type lines and 1.82 × 10-6 for mismatch repair deficient lines) of base duplication or deletion driven by large-scale copy number variations (CNVs). These duplication-deletions are located in two pathogenic islands, IMEX and the large integron island. Each element of these islands has discrepant rate in rapid integration and excision, which provides clues to the pandemicity evolution of V. cholerae. These results also suggest that large-scale structural variants such as CNVs can accumulate rapidly during short-term evolution. Mismatch repair deficient lines exhibit a significantly increased mutation rate in the larger chromosome (Chr1) at specific regions, and this pattern is not observed in wild-type lines. We propose that the high frequency of GATC sites in Chr1 improves the efficiency of MMR, resulting in similar rates of mutation in the wild-type condition. In addition, different mutation rates and spectra were observed in the MA lines under distinct growth conditions, including minimal media, rich media and antibiotic treatments.


Assuntos
Pareamento de Bases/genética , Cólera/epidemiologia , Cólera/microbiologia , Deleção de Genes , Duplicação Gênica , Pandemias , Vibrio cholerae/genética , Cromossomos Bacterianos/genética , Meios de Cultura , Período de Replicação do DNA/efeitos dos fármacos , Ilhas Genômicas , Humanos , Taxa de Mutação , Reprodutibilidade dos Testes , Rifampina/farmacologia , Vibrio cholerae/efeitos dos fármacos
19.
Infect Immun ; 86(9)2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29967093

RESUMO

Coccidiosis is one of the most serious diseases of livestock and birds in the world. Vaccination with live-parasite anticoccidial vaccines with genetic manipulation improving the immunogenicity of vaccine strains would be the best means for controlling coccidiosis in breeder and layer stocks, even in fast-growing broilers. Profilin from apicomplexan parasites is the first molecularly defined ligand for Toll-like receptor 11 (TLR11) and TLR12 in mice and is a potential molecular adjuvant. Here, we constructed a transgenic Eimeria tenella line (Et-EmPro) expressing the profilin of Eimeria maxima, the most immunogenic species of chicken coccidia, and evaluated the adjuvant effects of EmPro on the immunogenicity of E. tenella We found that immunization with the transgenic Eimeria parasites, compared with the wild type, elicited greater parasite antigen-specific cell-mediated immunity, characterized by increased numbers of interferon gamma (IFN-γ)-secreting lymphocytes. The transgenic parasite also induced better protective immunity against E. tenella challenge than the wild type. In addition, the diversity of the fecal microbiome of the birds immunized with the transgenic parasite differed from that of the microbiome of the wild-type-immunized birds, indicating interactions of Eimeria with the gut microbiome of chickens. Our results showing enhanced immunogenicity of E. tenella by use of EmPro as a molecular adjuvant derived from the most immunogenic affinis species represent a large step forward in the development of the next generation of coccidiosis vaccines using Eimeria as a vaccine platform expressing molecular adjuvants and potentially other pathogen antigens against not only coccidiosis but also other infectious diseases.


Assuntos
Coccidiose/imunologia , Eimeria tenella/imunologia , Microbioma Gastrointestinal , Profilinas/genética , Adjuvantes Imunológicos , Animais , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Galinhas/microbiologia , Coccidiose/prevenção & controle , Coccidiose/veterinária , Eimeria/genética , Eimeria tenella/genética , Fezes/parasitologia , Imunidade Celular , Imunogenicidade da Vacina , Interferon gama/imunologia , Organismos Geneticamente Modificados/imunologia , Doenças das Aves Domésticas/parasitologia , Doenças das Aves Domésticas/prevenção & controle , Vacinas Protozoárias/imunologia
20.
Sci Rep ; 8(1): 7382, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29743515

RESUMO

Inconsistent results on the association between evolutionary rates and amino acid composition of proteins have been reported in eukaryotes. However, there are few studies of how amino acid composition can influence evolutionary rates in bacteria. Thus, we constructed linear regression models between composition frequencies of amino acids and evolutionary rates for bacteria. Compositions of all amino acids can on average explain 21.5% of the variation in evolutionary rates among 273 investigated bacterial organisms. In five model organisms, amino acid composition contributes more to variation in evolutionary rates than protein abundance, and frequency of optimal codons. The contribution of individual amino acid composition to evolutionary rate varies among organisms. The closer the GC-content of genome to its maximum or minimum, the better the correlation between the amino acid content and the evolutionary rate of proteins would appear in that genome. The types of amino acids that significantly contribute to evolutionary rates can be grouped into GC-rich and AT-rich amino acids. Besides, the amino acid with high composition also contributes more to evolutionary rates than amino acid with low composition in proteome. In summary, amino acid composition significantly contributes to the rate of evolution in bacterial organisms and this in turn is impacted by GC-content.


Assuntos
Sequência de Aminoácidos , Bactérias/genética , Evolução Molecular , Genoma Bacteriano , Proteoma/genética , Bactérias/metabolismo , Composição de Bases , Proteoma/química , Proteoma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...