Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(18): 22563-22573, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37094246

RESUMO

Transition-metal-oxide-based electrochemical electrodes usually suffer from poor electron and ion transport, leading to deteriorated rate performance and cycling stability. Herein, we address these issues by developing a facile "conducting encapsulation" strategy toward a nanoporous PEDOT nanowire/MnO2 nanoparticle/PEDOT nanowire composite electrode. Through encapsulation of the PEDOT nanowire network, the overall electrochemical performance of the resultant composite electrode is substantially enhanced. Specifically, the rate capability and capacitance retention are improved by ∼48.2 and ∼33%, respectively, which are 89.8% at 0.8-40 mA/cm2 and 93% after 3000 charge/discharge cycles at 2.0 mA/cm2, respectively. Moreover, the specific capacitance is increased by ∼6 times of that of the MnO2@PEDOT NW electrode at ∼200 mA/cm2. We find that a nanoporous conducting nanowire network that encapsulates a MnO2 nanoparticle layer can provide efficient electron and ion transport paths and stabilize the structure of MnO2 from collapse during charge/discharge cycling and mechanical deformation. This strategy can be applied to other pseudocapacitive material-based electrochemical electrodes, such as transition-metal oxides and conducting polymers.

2.
Polymers (Basel) ; 14(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36297878

RESUMO

In this study, a strategy to fabricate nitrogen-doped porous core-sheath graphene fibers with the incorporation of polypyrrole-induced nitrogen doping and graphene oxide for porous architecture in sheath is reported. Polypyrrole/graphene oxide were introduced onto wet-spun graphene oxide fibers by dip-coating. Nitrogen-doped core-sheath graphene-based fibers (NSG@GFs) were obtained with subsequently thermally carbonized polypyrrole/small-sized graphene oxide and graphene oxide fiber slurry (PPY/SGO@GOF). Both nitrogen doping and small-sized graphene sheets can improve the utilization of graphene layers in graphene-based fiber electrode by preventing stacking of the graphene sheets. Enhanced electrochemical performance is achieved due to the introduced pseudo-capacitance and enhanced electrical double-layered capacitance. The specific capacitance (38.3 mF cm-2) of NSG@GF is 2.6 times of that of pure graphene fiber. The energy density of NSG@GF reaches 3.40 µWh cm-2 after nitrogen doping, which is 2.59 times of that of as-prepared one. Moreover, Nitrogen-doped graphene fiber-based supercapacitor (NSG@GF FSSC) exhibits good conductivity (155 S cm-1) and cycle stability (98.2% capacitance retention after 5000 cycles at 0.1 mA cm-2).

4.
ACS Appl Mater Interfaces ; 11(28): 25205-25217, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31268652

RESUMO

Chemically converted graphene fiber-shaped supercapacitors (FSSCs) are highly promising flexible energy storage devices for wearable electronics. However, the ultralow specific capacitance and poor rate performance severely hamper their practical applications. They are caused by severe stacking of graphene nanosheets and tortuous ion diffusion path in graphene-based electrodes; thus, the ultralow utilization of graphene has been rarely carefully considered to date. Here, we address these issues by developing three-dimensional hierarchically porous graphene fiber with the incorporation of holey graphene for efficient utilization of graphene to achieve fast charge diffusion and good charge storage capability. Without deterioration in electrical but robust mechanical properties, the optimal graphene fiber shows ultrahigh specific capacitance of 220.1 F cm-3 at current density of 0.1 A cm-3 and boosted specific capacitance of 254.3 F cm-3 at 0.1 A cm-3 after nitrogen doping. Moreover, the nitrogen-doped 40% holey graphene hybrid fiber-assembled FSSC exhibits ultrahigh rate capability (96, 91, and 87% at current density of 0.5, 1.0, and 2.0 A cm-3, respectively, and 67% even at ultrahigh current density of 10.0 A cm-3) and excellent cycle stability (95.65% capacitance retention after 10 000 cycles). The contribution of three-dimensional interconnected hierarchically porous network to the enhanced electrochemical (EC) performance is semiquantitatively elucidated by Brunauer-Emmett-Teller and energy dispersive spectroscopy mapping. Our work gives insights into the importance of fully utilizing graphene and provides an efficient strategy for high EC performance in chemically converted graphene-based FSSCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...