Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 167: 29-35, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30292973

RESUMO

Perfluorooctanoic acid (PFOA) is a perfluorinated compound that is widely distributed, is persistent in the environment, and has a low-level chronic exposure effect on human health. The aim of this study was to investigate the peroxisome proliferator activated receptors γ (PPARγ) and the sterol regulatory element-binding protein 2 (SREBP2) signaling pathways in regulating the lipid damage response to PFOA in the livers of amphibians. Male and female frogs (Rana nigromaculata) were exposed to 0, 0.01, 0.1, 0.5 and 1 mg/L PFOA. After treatment, we evaluated the pathological changes in the liver by Oil Red O, staining and examined the total cholesterol (T-CHO) and triglyceride (TG) contents. The mRNA expression levels of PPARγ, Fatty acid synthase (FAS), Acetyl-CoA carboxylase (ACC), Glycerol-3-phosphate acyltransferase (GPAT), SREBP2 and 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) were measured by quantitative real-time polymerase chain reaction (qRT-PCR). The administration of PFOA caused marked lipid accumulation damage in the amphibian livers. The T-CHO contents were elevated significantly after PFOA treatment; these results show a dose-dependent manner in both sexes. The TG content showed a significant increase in male livers, while it was elevated significantly in female livers. The RT-PCR results showed that the mRNA expression levels of PPARγ, ACC, FAS, GPAT, SREBP2 and HMG-CoA were significantly dose-dependently increased in the PFOA-treated groups compared with those of the control group. Our results demonstrated that PFOA-induced lipid accumulation also affected the expression levels of genes FAS, ACC, GPAT and HMG-CoA in the PPARγ and SREBP2 signaling pathways in the liver. These finding will provide a scientific theoretical basis for the protection of Rana nigromaculata against PFOA effects.


Assuntos
Caprilatos/toxicidade , Fluorocarbonos/toxicidade , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Ranidae/metabolismo , Acil Coenzima A/metabolismo , Animais , Colesterol/metabolismo , Relação Dose-Resposta a Droga , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/metabolismo , Feminino , Fígado/metabolismo , Masculino , PPAR gama/genética , PPAR gama/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Triglicerídeos/metabolismo
2.
Environ Pollut ; 243(Pt A): 394-403, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30199813

RESUMO

Tetrabromobisphenol A (TBBPA) and tetrachlorobisphenol A (TCBPA) are persistent toxic environmental pollutants that cause severe reproductive toxicity in animals. The goal of this study was to compare the reproductive toxic effects of TBBPA and TCBPA on male Rana nigromaculata and to expound on the mechanisms leading to these effects. Healthy adult frogs were exposed to 0, 0.001, 0.01, 0.1, and 1 mg/L of TBBPA and TCBPA for 14 days. Sperm numbers were counted by erythrometry. Sperm mobility and deformities were observed under a light microscope (400 × ). We used commercial ELISA kits to determine the serum content of testosterone (T), estradiol (E2), luteinizing hormone (LH) and follicle stimulating hormone (FSH). Expression of androgen receptor (AR) mRNA was detected using real-time qPCR. Sperm numbers and sperm mobility were significantly decreased and sperm deformity was significantly increased in a concentration dependent manner following exposure to TBBPA and TCBPA. Sperm deformity was significantly greater in the 1 mg/L TCBPA (0.549) treatment group than in the 1 mg/L TBBPA (0.397) treatment group. Serum T content was significantly greater in the 0.01, 0.1 and 1 mg/L TBBPA and TCBPA experimental groups compared with controls, while E2 content was significantly greater in only the 1 mg/L TBBPA and TCBPA experimental groups. Expression levels of LH and FSH significantly decreased in the 1 mg/L TBBPA and TCBPA treatment groups. AR mRNA expression decreased markedly in all the treated groups. Our results indicated that TBBPA and TCBPA induced reproductive toxicity in a dose-dependent manner, with TCBPA having greater toxicity than TBBPA. Furthermore, changes in T, E2, LH, and FSH levels induced by TBBPA and TCBPA exposure, which led to endocrine disorders, also caused disturbance of spermatogenesis through abnormal gene expressions of AR in the testes.


Assuntos
Clorofenóis/toxicidade , Bifenil Polibromatos/toxicidade , Reprodução/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Estradiol/sangue , Hormônio Foliculoestimulante/sangue , Hormônio Luteinizante/sangue , Masculino , Ranidae , Receptores Androgênicos/biossíntese , Contagem de Espermatozoides , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatogênese/efeitos dos fármacos , Espermatozoides/anormalidades , Testosterona/sangue
3.
Environ Pollut ; 238: 1035-1043, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29459119

RESUMO

Perfluorooctanoic acid (PFOA) is widely distributed in various environmental media and is toxic to organisms. This study demonstrated that PFOA induces hepatotoxicity in the frog and evaluated the role of CYP3A and the Nrf2-ARE signaling pathway in regulating responses to PFOA-induced hepatotoxicity. Rana nigromaculata were exposed to 0, 0.01, 0.1, 0.5, or 1 mg/L PFOA solutions in a static-renewal system for 14 days. Liver tissue samples were collected 24 h after the last treatment. Hepatic histology was observed by HE staining and transmission electron microscopy. The oxidative stress levels in the liver were measured. The expression levels of CYP3A, Nrf2, NQO1, and HO-1 mRNA were measured by quantitative reverse transcription-polymerase chain reaction. PFOA-treated frog liver tissue exhibited diffuse cell borders, cytoplasmic vacuolization, broken nuclei, nuclear chromatin margination, and swollen mitochondria. In addition, the livers of PFOA-treated frogs showed a significantly elevated content of reactive oxygen species, malondialdehyde, glutathione and glutathione S-transferase activity compared to the livers of control frogs. However, the glutathione peroxidase activities concomitantly decreased in PFOA-treated frogs compared to those in the control group. Furthermore, compared with control frogs, the expression levels of CYP3A, Nrf2, and NQO1 mRNA significantly increased in PFOA-treated frogs. HO-1 mRNA expression remarkably increased only in groups treated with 0.5 or 1 mg/L PFOA. Our results indicate that PFOA induces hepatotoxicity in a dose-dependent manner. Furthermore, the results of the comparison analysis between different gender groups illustrated that PFOA is more toxic to female frogs than male frogs. Our results demonstrated that PFOA causes liver damage and that CYP3A enhances PFOA-induced female frogs hepatotoxicity are more virulent than male through biotransformation, and the activation of the Nrf2-ARE pathway is induced to protect against hepatotoxicity in Rana nigromaculata, all of which provide the scientific basis for the protection of amphibians against environmental contaminants.


Assuntos
Caprilatos/toxicidade , Poluentes Ambientais/toxicidade , Fluorocarbonos/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Ranidae/fisiologia , Animais , Doença Hepática Induzida por Substâncias e Drogas/patologia , Glutationa/metabolismo , Fígado/metabolismo , Masculino , Malondialdeído/metabolismo , Oxirredução , Estresse Oxidativo , Substâncias Protetoras/metabolismo , Ranidae/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
4.
Environ Pollut ; 236: 12-20, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29414332

RESUMO

Microcystin-leucine-arginine (MCLR) is the most popular and toxic variant among microcystins, which can cause severe reproductive toxicity to animals. However, the mechanisms of reproductive toxicity induced by MCLR in amphibians are still not entirely clear. In the current study, toxicity mechanisms of MCLR on the reproductive system of male Rana nigromaculata followed by low concentration (0, 0.1, 1, and 10 µg/L) and short-term (0, 7, and 14 days) MCLR exposure were shown. It was observed that MCLR could be bioaccumulated in the testes of male frogs, and the theoretical bioaccumulation factor values were 0.24 and 0.19 exposed to 1 µg/L and 10 µg/L MCLR for 14 days, respectively. MCLR exposure significantly decreased testosterone (T) concentrations and increased estradiol (E2) concentrations exposed to 1 and 10 µg/L MCLR for 14 days. The mRNA levels of HSD17B3 were downregulated, and HSD17B1 and CYP19A1 mRNA expression levels were upregulated, respectively. Only 10 µg/L MCLR group showed significant induction of follicle-stimulating hormone (FSH) levels and cyclic adenosine monophosphate (cAMP) content. Moreover, AR and ESR1 mRNA expression levels were significantly upregulated exposed to 1 and 10 µg/L MCLR for 14 days, respectively. Our results suggested that low-concentration MCLR induced transcription changes of CYP19A1, HSD17B3, and HSD17B1 led to endocrine disorders, and caused interference of spermatogenesis by the decrease of T and abnormal gene expressions of AR and ESR1 in the testes of R. nigromaculata.


Assuntos
Hormônios Esteroides Gonadais/biossíntese , Microcistinas/toxicidade , Ranidae/fisiologia , Testículo/efeitos dos fármacos , Animais , Regulação para Baixo , Expressão Gênica , Hormônios Esteroides Gonadais/análise , Masculino , Ranidae/genética , Testículo/química , Testículo/metabolismo , Regulação para Cima , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...