Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Environ ; 47(8): 3046-3062, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38654596

RESUMO

Plants possess the remarkable ability to integrate the circadian clock with various signalling pathways, enabling them to quickly detect and react to both external and internal stress signals. However, the interplay between the circadian clock and biological processes in orchestrating responses to environmental stresses remains poorly understood. TOC1, a core component of the plant circadian clock, plays a vital role in maintaining circadian rhythmicity and participating in plant defences. Here, our study reveals a direct interaction between TOC1 and the promoter region of MYB44, a key gene involved in plant defence. TOC1 rhythmically represses MYB44 expression, thereby ensuring elevated MYB44 expression at dawn to help the plant in coping with lowest temperatures during diurnal cycles. Additionally, both TOC1 and MYB44 can be induced by cold stress in an Abscisic acid (ABA)-dependent and independent manner. TOC1 demonstrates a rapid induction in response to lower temperatures compared to ABA treatment, suggesting timely flexible regulation of TOC1-MYB44 regulatory module by the circadian clock in ensuring a proper response to diverse stresses and maintaining a balance between normal physiological processes and energy-consuming stress responses. Our study elucidates the role of TOC1 in effectively modulating expression of MYB44, providing insights into the regulatory network connecting the circadian clock, ABA signalling, and stress-responsive genes.


Assuntos
Ácido Abscísico , Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Transdução de Sinais , Estresse Fisiológico , Fatores de Transcrição , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/metabolismo , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Estresse Fisiológico/genética , Regiões Promotoras Genéticas/genética , Relógios Circadianos/genética
2.
J Integr Plant Biol ; 64(11): 2135-2149, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35962716

RESUMO

Autophagy is an evolutionarily conserved degradation pathway in eukaryotes; it plays a critical role in nutritional stress tolerance. The circadian clock is an endogenous timekeeping system that generates biological rhythms to adapt to daily changes in the environment. Accumulating evidence indicates that the circadian clock and autophagy are intimately interwoven in animals. However, the role of the circadian clock in regulating autophagy has been poorly elucidated in plants. Here, we show that autophagy exhibits a robust circadian rhythm in both light/dark cycle (LD) and in constant light (LL) in Arabidopsis. However, autophagy rhythm showed a different pattern with a phase-advance shift and a lower amplitude in LL compared to LD. Moreover, mutation of the transcription factor LUX ARRHYTHMO (LUX) removed autophagy rhythm in LL and led to an enhanced amplitude in LD. LUX represses expression of the core autophagy genes ATG2, ATG8a, and ATG11 by directly binding to their promoters. Phenotypic analysis revealed that LUX is responsible for improved resistance of plants to carbon starvation, which is dependent on moderate autophagy activity. Comprehensive transcriptomic analysis revealed that the autophagy rhythm is ubiquitous in plants. Taken together, our findings demonstrate that the LUX-mediated circadian clock regulates plant autophagy rhythms.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Relógios Circadianos , Animais , Relógios Circadianos/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ritmo Circadiano/genética , Autofagia/genética
3.
Plant Cell Environ ; 40(7): 997-1008, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28054361

RESUMO

Plants generate rhythmic metabolism during the repetitive day/night cycle. The circadian clock produces internal biological rhythms to synchronize numerous metabolic processes such that they occur at the required time of day. Metabolism conversely influences clock function by controlling circadian period and phase and the expression of core-clock genes. Here, we show that AKIN10, a catalytic subunit of the evolutionarily conserved key energy sensor sucrose non-fermenting 1 (Snf1)-related kinase 1 (SnRK1) complex, plays an important role in the circadian clock. Elevated AKIN10 expression led to delayed peak expression of the circadian clock evening-element GIGANTEA (GI) under diurnal conditions. Moreover, it lengthened clock period specifically under light conditions. Genetic analysis showed that the clock regulator TIME FOR COFFEE (TIC) is required for this effect of AKIN10. Taken together, we propose that AKIN10 conditionally works in a circadian clock input pathway to the circadian oscillator.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Relógios Circadianos/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Luz , Mutação , Proteínas Nucleares/genética , Plantas Geneticamente Modificadas , Proteínas Serina-Treonina Quinases/genética
4.
Plant J ; 76(2): 188-200, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23869666

RESUMO

Plants often respond to environmental changes by reprogramming metabolic and stress-associated pathways. Homeostatic integration of signaling is a central requirement for ensuring metabolic stability in living organisms. Under diurnal conditions, properly timed rhythmic metabolism provides fitness benefits to plants. TIME FOR COFFEE (TIC) is a circadian regulator known to be involved in clock resetting at dawn. Here we explored the mechanism of influence of TIC in plant growth and development, as initiated by a microarray analysis. This global profiling showed that a loss of TIC function causes a major reprogramming of gene expression that predicts numerous developmental, metabolic, and stress-related phenotypes. This led us to demonstrate that this mutant exhibits late flowering, a plastochron defect, and diverse anatomical phenotypes. We further observed a starch-excess phenotype and altered soluble carbohydrate levels. tic exhibited hypersensitivity to oxidative stress and abscisic acid, and this was associated with a striking resistance to drought. These phenotypes were connected to an increase in total glutathione levels that correlated with a readjustment of amino acids and polyamine pools. By comparatively analyzing our transcriptomic and metabolomic data, we concluded that TIC is a central element in plant homeostasis that integrates and coordinates developmental, metabolic, and environmental signals.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas Nucleares/fisiologia , Ácido Abscísico/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Metabolismo dos Carboidratos , Ritmo Circadiano/genética , Glutationa/metabolismo , Homeostase , Metaboloma , Proteínas Nucleares/genética , Estresse Oxidativo , Fenótipo , Estresse Fisiológico , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...