Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Poult Sci ; 103(7): 103824, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38772089

RESUMO

Coccidiosis, which is caused by Eimeria species, results in huge economic losses to the poultry industry. Arbor Acres (AA) broilers and yellow-feathered broilers are the dominant broilers in northern and southern China, respectively. However, their susceptibility to coccidiosis has not been fully compared. In this study, the susceptibility of yellow-feathered broilers, AA broilers and Lohmann pink layers to E. tenella was evaluated based on mortality rate, relative body weight gain rate, intestinal lesion score, oocyst output, anticoccidial index (ACI), and cecum weight and length. The yellow-feathered broilers were shown to produce significantly fewer oocysts with higher intestinal lesion score compared to AA broilers, which had the highest growth rates and ACI scores. Subsequently, changes in the cecal microbiota of the 3 chicken lines before and after high-dose infection (1 × 104 oocysts) with E. tenella were determined by 16S rRNA sequencing. The results showed that composition of the microbiota changed dramatically after infection. The abundance of Firmicutes and Bacteroidetes in the infected chickens decreased, and Proteobacteria increased significantly among the different chicken lines. At the genus level, Escherichia increased significantly in all 3 groups of infected chickens, but Lactobacillus decreased to 0% in the infected yellow-feathered broilers. The results of the study indicate that the susceptibility to E. tenella varies among the 3 chicken lines, and that changes in intestinal microbiota by E. tenella-infection among the different chicken lines had a similar trend, but to different degrees. This study provides basic knowledge of the susceptibility in the 3 chicken lines, which can be helpful for the control and prevention of coccidiosis.


Assuntos
Ceco , Galinhas , Coccidiose , Microbioma Gastrointestinal , Doenças das Aves Domésticas , Animais , Coccidiose/veterinária , Coccidiose/parasitologia , Doenças das Aves Domésticas/parasitologia , Doenças das Aves Domésticas/microbiologia , Ceco/microbiologia , Ceco/parasitologia , Suscetibilidade a Doenças/veterinária , Eimeria tenella/fisiologia , Feminino , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética , China , Eimeria/fisiologia
2.
Int Immunopharmacol ; 128: 111469, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38211480

RESUMO

Osteoarthritis (OA) is a prevalent joint disorder pathologically correlated to chondrocyte ferroptosis. Gamma-oryzanol (γ-Ory), as a first-line drug for autonomic disorders, aroused our interest because of its antioxidant, lipid-lowering, and hypoglycemic potential. The purpose of this study was to investigate the potential impact and mechanism of γ-Ory in treating OA. And the inhibition of γ-Ory in extracellular matrix molecule (ECM) degradation, ferroptosis, and Keap1-Nrf2 binding in IL-1ß-exposed chondrocytes was detected via immunoblotting, immunofluorescence, and co-immunoprecipitation. Micro-CT, SO staining, and immunofluorescence have been conducted to assess the impact of γ-Ory treatment on ACLT-mediated OA in rats at both imaging and histological stages. We found that γ-Ory dose-dependently suppressed IL-1ß-induced ECM deterioration and chondrocyte ferroptosis. Our animal experiments revealed that γ-Ory delayed ACLT-mediated OA development. Mechanistically, γ-Ory interfered with the binding of Keap1 to Nrf2 to promote the latter's nuclear import, thereby increasing the expression of detoxification enzymes. Summarily, our works support γ-Ory's potential as a candidate drug for the treatment of OA.


Assuntos
Ferroptose , Osteoartrite , Fenilpropionatos , Animais , Ratos , Condrócitos/metabolismo , Interleucina-1beta/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Osteoartrite/tratamento farmacológico , Fenilpropionatos/uso terapêutico
3.
Phytomedicine ; 125: 155342, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38295665

RESUMO

BACKGROUND: Type 2 diabetes is often linked with osteoporosis (T2DOP), a condition that accelerates bone degeneration and increases the risk of fractures. Unlike conventional menopausal osteoporosis, the diabetic milieu exacerbates the likelihood of fractures and osteonecrosis. In particular poliumoside (Pol), derived from Callicarpa kwangtungensis Chun, has shown promising anti-oxidant and anti-inflammatory effects. Yet, its influence on T2DOP remains to be elucidated. PURPOSE: The focus of this study was to elucidate the influence of Pol in HGHF-associated ferroptosis and its implications in T2DOP. STUDY DESIGN: A murine model of T2DOP was established using a minimal dosage of streptozotocin (STZ) through intraperitoneal infusion combined with a diet high in fat and sugar. Concurrently, to mimic the diabetic condition in a lab environment, bone mesenchymal stem cells (BMSCs) were maintained in a high-glucose and high-fat (HGHF) setting. METHODS: The impact of Pol on BMSCs in an HGHF setting was determined using methods, such as BODIPY-C11, FerroOrange staining, mitochondrial functionality evaluations, and Western blot methodologies, coupled with immunoblotting and immunofluorescence techniques. To understand the role of Pol in a murine T2DOP model, techniques including micro-CT, hematoxylin and eosin (H&E) staining, dual-labeling with calcein-alizarin red, and immunohistochemistry were employed for detailed imaging and histological insights. RESULTS: Our findings suggest that Pol acts against HGHF-induced bone degradation and ferroptosis, as evidenced by an elevation in glutathione (GSH) and a decline in malondialdehyde (MDA) levels, lipid peroxidation, and mitochondrial reactive oxygen species (ROS). Furthermore, Pol treatment led to increased bone density, enhanced GPX4 markers, and reduced ROS in the distal femur region. On investigating the underlying mechanism of action, it was observed that Pol triggers the Nrf2/GPX4 pathway, and the introduction of lentivirus-Nrf2 negates the beneficial effects of Pol in HGHF-treated BMSCs. CONCLUSION: Pol is effective in treating T2DOP by activating the Nrf2/GPX4 signaling pathway to inhibit ferroptosis.


Assuntos
Ácidos Cafeicos , Diabetes Mellitus Tipo 2 , Ferroptose , Glicosídeos , Osteoporose , Animais , Camundongos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Fator 2 Relacionado a NF-E2 , Espécies Reativas de Oxigênio , Osteoporose/tratamento farmacológico , Osteoporose/prevenção & controle
4.
J Agric Food Chem ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37917162

RESUMO

Osteoporosis (OP) is typically brought on by disruption of bone homeostasis. Excessive oxidative stress and mitochondrial dysfunction are believed to be the primary mechanisms underlying this disorder. Therefore, in order to restore bone homeostasis effectively, targeted treatment of oxidative stress and mitochondrial dysfunction is necessary. Cinnamaldehyde (CIN), a small molecule that acts as an agonist for the nuclear factor erythroid 2-related factor (Nrf2), has been found to possess antiapoptotic, anti-inflammatory, and antioxidant properties. We found that CIN, while rescuing apoptosis, can also reduce the accumulation of reactive oxygen species (ROS) to improve mitochondrial dysfunction and thus restore the osteogenic differentiation potential of BMSCs disrupted by hydrogen peroxide (H2O2) exposure. The role of CIN was preliminarily considered to be a consequence of Nrf2/HO-1 axis activation. The ovariectomized mice model further demonstrated that CIN treatment ameliorated oxidative stress in vivo, partially reversing OVX-induced bone loss. This improvement was seen in the trabecular microarchitecture and bone biochemical indices. However, when ML385 was concurrently injected with CIN, the positive effects of CIN were largely blocked. In conclusion, this study sheds light on the intrinsic mechanisms by which CIN regulates BMSCs and highlights the potential therapeutic applications of these findings in the treatment of osteoporosis.

5.
Int J Mol Sci ; 24(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37176073

RESUMO

Intestinal coccidiosis is a common parasitic disease in livestock, caused by the infection of Eimeria and Cystoisospora parasites, which results in great economic losses to animal husbandry. Triazine compounds, such as toltrazuril and diclazuril, are widely used in the treatment and chemoprophylaxis of coccidiosis. Unfortunately, widespread drug resistance has compromised their effectiveness. Most studies have focused on prophylaxis and therapeutics with toltrazuril in flocks, while a comprehensive understanding of how toltrazuril treatment alters the transcriptome of E. tenella remains unknown. In this study, merozoites of E. tenella were treated in vitro with 0.5 µg/mL toltrazuril for 0, 1, 2 and 4 h, respectively. The gene transcription profiles were then compared by high-throughput sequencing. Our results showed that protein hydrolysis genes were significantly upregulated after drug treatment, while cell cycle-related genes were significantly downregulated, suggesting that toltrazuril may affect parasite division. The expression of redox-related genes was upregulated and elevated levels of ROS and autophagosomes were detected in the parasite after toltrazuril treatment, suggesting that toltrazuril may cause oxidative stress to parasite cells and lead to its autophagy. Our results provide basic knowledge of the response of Eimeria genes to toltrazuril and further analysis of the identified transcriptional changes can provide useful information for a better understanding of the mechanism of action of toltrazuril against Eimeria.


Assuntos
Coccidiose , Coccidiostáticos , Eimeria tenella , Eimeria , Doenças das Aves Domésticas , Animais , Eimeria tenella/genética , Coccidiostáticos/farmacologia , Coccidiostáticos/uso terapêutico , Galinhas , Doenças das Aves Domésticas/tratamento farmacológico , Coccidiose/tratamento farmacológico , Triazinas/farmacologia , Triazinas/uso terapêutico , Estresse Oxidativo , Autofagia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...