Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Environ Sci Technol ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037720

RESUMO

Earthworms are critical in regulating soil processes and act as filters for antibiotic resistance genes (ARGs). Yet, the geographic patterns and main drivers of earthworm gut ARGs remain largely unknown. We collected 52 earthworm and soil samples from arable and forest ecosystems along a 3000 km transect across China, analyzing the diversity and abundance of ARGs using shotgun metagenomics. Earthworm guts harbored a lower diversity and abundance of ARGs compared to soil, resulting in a stronger distance-decay rate of ARGs in the gut. Greater deterministic assembly processes of ARGs were found in the gut than in soil. The earthworm gut had a lower frequency of co-occurrence patterns between ARGs and mobile genetic elements (MGEs) in forest than in arable systems. Viral diversity was higher in the gut compared to soil and was negatively correlated with bacterial diversity. Bacteria such as Streptomyces and Pseudomonas were potential hosts of both viruses and ARGs. Viruses had negative effects on the diversity and abundance of ARGs, likely due to the lysis on ARG-bearing bacteria. These findings provide new insights into the variations of ARGs in the earthworm gut and highlight the vital role of viruses in the regulation of ARGs in the soil ecosystem.

3.
BMC Plant Biol ; 24(1): 555, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877393

RESUMO

BACKGROUND: Selenium is essential for livestock and human health. The traditional way of adding selenium to livestock diets has limitations, and there is a growing trend to provide livestock with a safe and efficient source of selenium through selenium-enriched pasture. Therefore, this study was conducted to investigate the effects of selenium enrichment on fermentation characteristics, selenium content, selenium morphology, microbial community and in vitro digestion of silage alfalfa by using unenriched (CK) and selenium-enriched (Se) alfalfa as raw material for silage. RESULTS: In this study, selenium enrichment significantly increased crude protein, soluble carbohydrate, total selenium, and organic selenium contents of alfalfa silage fresh and post-silage samples, and it significantly decreased neutral detergent fiber and acid detergent fiber contents (p < 0.05). Selenium enrichment altered the form of selenium in plants, mainly in the form of SeMet and SeMeCys, which were significantly higher than that of CK (p < 0.05). Selenium enrichment could significantly increase the lactic acid content, reduce the pH value, change the diversity of bacterial community, promote the growth of beneficial bacteria such as Lactiplantibacillus and inhibit the growth of harmful bacteria such as Pantoea, so as to improve the fermentation quality of silage. The in vitro digestibility of dry matter (IVDMD), in vitro digestibility of acid detergent fibers (IVADFD) and in vitro digestibility of acid detergent fibers (IVNDFD) of silage after selenium enrichment were significantly higher than those of CK (p < 0.05). CONCLUSION: This study showed that the presence of selenium could regulate the structure of the alfalfa silage bacterial community and improve alfalfa silage fermentation quality. Selenium enrichment measures can change the morphology of selenium in alfalfa silage products, thus promoting the conversion of organic selenium.


Assuntos
Fermentação , Medicago sativa , Microbiota , Selênio , Silagem , Medicago sativa/metabolismo , Silagem/análise , Selênio/metabolismo , Animais , Ração Animal/análise
4.
Huan Jing Ke Xue ; 45(6): 3459-3467, 2024 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-38897766

RESUMO

Road transport is the primary source of greenhouse gas emissions in China's transportation field. As an important means to achieve the "double carbon" goal in the transportation field, the new energy automobile industry will face a large number of power battery scrapping in the future. In order to quantitatively assess the carbon emission reduction benefits generated by the spent ternary lithium-ion battery waste recycling industry, the carbon footprint accounting model of spent ternary lithium-ion battery waste recycling and utilization was constructed from the life cycle perspective. By optimizing the power structure and transportation structure, the carbon emission reduction potential of spent ternary lithium-ion battery waste recycling was predicted and evaluated. In addition, the uncertainty analysis was conducted using the propagation of uncertainty equation to ensure the reliability and effectiveness of the carbon footprint results. The results showed that the current carbon footprint of Chinese enterprises using wet technology to recover 1 kg waste lithium batteries was -2 760.90 g (directional recycling process) and -3 752.78 g (recycling process), and the uncertainty of the carbon footprint was 16 % (directional recycling process) and 15 % (recycling process), respectively. From the analysis of carbon emission contribution, the regenerated product stage was the primary source of carbon reduction in the wet recycling and utilization of waste ternary lithium batteries, whereas the battery acquisition, disassembly, and end treatment stages were the main sources of carbon increase. Compared to optimizing the transportation structure, optimizing the power structure could effectively achieve greater carbon emission reduction potential. Under the collaborative optimization scenario, compared to that before optimization, 14 %-19 % carbon emission reduction could be achieved. Compared with native products, the directional circulation process and recycling process could achieve 9 % and 11 % emission reduction potential, respectively.

5.
Sci Rep ; 14(1): 10836, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38735982

RESUMO

In recent years, photovoltaic/thermal (PV/T) systems have played a crucial role in reducing energy consumption and environmental degradation, nonetheless, the low energy conversion efficiency presents a considerable obstacle for PV/T systems. Therefore, improving heat conversion efficiency is essential to enhance energy efficiency. In this paper, the PV/T system with the Tesla valve is proposed to solve this problem. Firstly, the cooling effect is simulated and analyzed in the system with four different flow channel structures: semicircle, rectangle, triangle and Tesla valve. The results indicate that the system with the Tesla valve exhibits superior cooling performance. Subsequently, several factors including angle, valve number, valve type, and pipe diameter ratio for the Tesla valve are further studied through numerical and simulation analysis. The results reveal that Tesla valves demonstrate optimal cooling performance when possessing the following structural parameters: complete symmetry, more valves, a 30-degree angle and a pipe diameter ratio of 1. Finally, four different types of fluid are selected to explore the Tesla valve. The conclusion shows that nanofluids with high density, low specific heat, and high thermal conductivity also improve the cooling performance. Thus, the PV/T system with the Tesla valve exhibits good heat dissipation and energy storage efficiency, electrical efficiency can reach 16.32% and thermal efficiency reach 59.65%.

6.
Angew Chem Int Ed Engl ; 63(31): e202405653, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38764409

RESUMO

Dithioacetals are heavily used in organic, material and medical chemistries, and exhibit huge potential to synthesize degradable or recyclable polymers. However, the current synthetic approaches of dithioacetals and polydithioacetals are overwhelmingly dependent on external catalysts and organic solvents. Herein, we disclose a catalyst- and solvent-free acetal-thiol click-like reaction for synthesizing dithioacetals and polydithioacetals. High conversion, higher than acid catalytic acetal-thiol reaction, can be achieved. High universality was confirmed by monitoring the reactions of linear and cyclic acetals (including renewable bio-sourced furan-acetal) with aliphatic and aromatic thiols, and the reaction mechanism of monomolecular nucleophilic substitution (SN1) and auto-protonation (activation) by thiol was clarified by combining experiments and density functional theory computation. Subsequently, we utilize this reaction to synthesize readily recyclable polydithioacetals. By simple heating and stirring, linear polydithioacetals with M ‾ ${\bar M}$ w of ~110 kDa were synthesized from acetal and dithiol, and depolymerization into macrocyclic dithioacetal and repolymerization into polydithioacetal can be achieved; through reactive extrusion, a semi-interpenetrating polymer dynamic network with excellent mechanical properties and continuous reprocessability was prepared from poly(vinyl butyral) and pentaerythritol tetrakis(3-mercaptopropionate). This green and high-efficient synthesis method for dithioacetals and polydithioacetals is beneficial to the sustainable development of chemistry.

7.
Sensors (Basel) ; 24(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38339536

RESUMO

Panoramic imaging is increasingly critical in UAVs and high-altitude surveillance applications. In addressing the challenges of detecting small targets within wide-area, high-resolution panoramic images, particularly issues concerning accuracy and real-time performance, we have proposed an improved lightweight network model based on YOLOv8. This model maintains the original detection speed, while enhancing precision, and reducing the model size and parameter count by 10.6% and 11.69%, respectively. It achieves a 2.9% increase in the overall mAP@0.5 and a 20% improvement in small target detection accuracy. Furthermore, to address the scarcity of reflective panoramic image training samples, we have introduced a panorama copy-paste data augmentation technique, significantly boosting the detection of small targets, with a 0.6% increase in the overall mAP@0.5 and a 21.3% rise in small target detection accuracy. By implementing an unfolding, cutting, and stitching process for panoramic images, we further enhanced the detection accuracy, evidenced by a 4.2% increase in the mAP@0.5 and a 12.3% decrease in the box loss value, validating the efficacy of our approach for detecting small targets in complex panoramic scenarios.

8.
Microbiol Spectr ; 12(4): e0375823, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38363135

RESUMO

Diet modulates the rumen microbiota, which in turn can impact the animal performance. The rumen microbiota is increasingly recognized for its crucial role in regulating the growth and meat quality of the host. Nevertheless, the mechanism by which the rumen microbiome influences the fatty acid and amino acid profiles of lambs in the grass feeding system remains unclear. This study aimed to evaluate the effects of different native grass-based diets on animal performance, meat quality, fatty acid compositions, amino acid profiles, and rumen microbiota of lamb. Seventy-two Ujumqin lambs were randomly assigned into three treatments according to the initial body weight (27.39 ± 0.51 kg) and age (6 months ± 6 days). The lambs received three diets: (i) non-pelleted native grass hay with 40% concentrate diet; the native grass and concentrate were fed individually; (ii) pelleted native grass hay with 40% concentrate diet (PHLC); (iii) pelleted native grass hay with 60% concentrate diet (PHHC). The results showed that among the three groups, the PHHC and PHLC diets had markedly (P < 0.05) higher average daily gain and pH45 min, respectively. All amino acid levels were significantly (P < 0.05) decreased in the PHHC diet than in the PHLC diet. The principal coordinate analysis of the ruminal microbiota indicated the markedly distinct separation (P = 0.001) among the three groups. In addition, the correlation analysis showed that the Rikenellaceae_RC9_gut_group, Prevotellaceae_UCG-003, Succinivibrio, and Succiniclasticum were significantly (P < 0.05) associated with most of the fatty acid and amino acid profiles. The correlation analysis of the association of microbiome with the meat quality provides us with a comprehensive understanding of the composition and function of the rumen microbial community, and these findings will contribute to the direction of future research in lamb. IMPORTANCE: Diet modulates the gut microbiome, which in turn impact the meat quality, yet few studies investigate the correlation between the rumen microbiome and the fatty acid profile of meat. Here, the current study develops an experiment to investigate the correlation of the rumen microbiome and fatty acid profile of meat: rumen microbiome responses to feed type and meat quality. The results indicated a unique microbiota in the rumen of lamb in response to diets and meat quality. Associations between utilization and production were widely identified among the affected microbiome and meat quality, and these findings will contribute to the direction of future research in lamb.


Assuntos
Microbioma Gastrointestinal , Rúmen , Ovinos , Animais , Ração Animal/análise , Dieta/veterinária , Ácidos Graxos/metabolismo , Carne , Aminoácidos/metabolismo
9.
Environ Int ; 183: 108431, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38217904

RESUMO

Microplastic (MP) pollution is a rapidly growing global environmental concern that has led to the emergence of a new environmental compartment, the plastisphere, which is a hotspot for the accumulation of antibiotic resistance genes (ARGs) and human bacterial pathogens (HBPs). However, studies on the effects of long-term organic fertilizer application on the dispersal of ARGs and virulence factor genes (VFGs) in the plastisphere of farmland soil have been limited. Here, we performed a field culture experiment by burying nylon bags filled with MPs in paddy soil that had been treated with different fertilizers for over 30 years to explore the changes of ARGs and VFGs in soil plastisphere. Our results show that the soil plastisphere amplified the ARG and VFG pollution caused by organic fertilization by 1.5 and 1.4 times, respectively. And it also led to a 2.7-fold increase in the risk of horizontal gene transfer. Meanwhile, the plastisphere tended to promote deterministic process in the community assembly of HBPs, with an increase of 1.4 times. Network analysis found a significant correlation between ARGs, VFGs, and bacteria in plastisphere. Correlation analysis highlight the important role of mobile genetic elements (MGEs) and bacterial communities in shaping the abundance of ARGs and VFGs, respectively. Our findings provide new insights into the health risk associated with the soil plastisphere due ARGs and VFGs derived from organic fertilizers.


Assuntos
Antibacterianos , Solo , Humanos , Antibacterianos/farmacologia , Fertilizantes/análise , Genes Bacterianos , Plásticos , Esterco/microbiologia , Microbiologia do Solo , Resistência Microbiana a Medicamentos/genética , Bactérias/genética
10.
J Hazard Mater ; 465: 133333, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38147751

RESUMO

Tire particles (TPs), a significant group of microplastics, can be discharged into the coastal environments in various ways. However, our understanding of how TPs impact the antibiotic resistance and pathogenic risks of microorganisms in coastal sediments remains limited. In this study, we used metagenomics to investigate how TPs and their leachates could affect the prevalence of antibiotic resistance genes (ARGs), virulence factor genes (VFGs), and their potential risks to the living creatures such as soil invertebrates and microorganisms in the coastal sediments. We discovered that TP addition significantly increased the abundance and diversity of ARGs and VFGs in coastal sediments, with raw TPs displayed higher impacts than TP leachates and TPs after leaching on ARGs and VFGs. With increasing TP exposure concentrations, the co-occurrence frequency of ARGs and mobile genetic elements (MGEs) in the same contig also increased, suggesting that TPs could enhance the dispersal risk of ARGs. Our metagenome-based binning analysis further revealed that exposure to TPs increased the abundance of potentially pathogenic antibiotic-resistant bacteria (PARB). In addition, chemical additives of TP leachates (e.g., Zn and N-cyclohexylformamide) significantly affected the changes of ARGs in the pore water. In summary, our study provides novel insights into the adverse effects of TP pollutions on aggravating the dissemination and pathogenic risks of ARGs and PARB in the coastal environment.


Assuntos
Antibacterianos , Plásticos , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Bactérias/genética , Genes Bacterianos
12.
Anim Microbiome ; 5(1): 65, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38115081

RESUMO

BACKGROUND: Lifestyle factors, such as diet, are known to be a driver on the meat quality, rumen microbiome and serum metabolites. Rumen microbiome metabolites may be important for host health, the correlation between rumen microbiome and production of rumen metabolites are reported, while the impact of rumen microbiome on the serum metabolome and fatty acid of meat are still unclear. This study was designed to explore the rumen microbiome, serum metabolome and fatty acid of meat in response to the grass diet and concentrate diet to lambs, and the relationship of which also investigated. METHODS: In the present study, 12 lambs were randomly divided into two groups: a grass diet (G) and a concentrate diet (C). Here, multiple physicochemical analyses combined with 16S rRNA gene sequences and metabolome analysis was performed to reveal the changes that in response to feed types. RESULTS: The concentrate diet could improve the growth performance of lambs compared to that fed with the grass diet. The microbiome composition was highly individual, compared to the concentrate group, the abundance of Rikenellaceae_RC9_gut_group, F082_unclassified, Muribaculaceae_unclassified, Ruminococcaceae_NK4A214_group, Bacteroidetes_unclassified, and Bacteroidales_UCG-001_unclassified were significantly (P < 0.05) lower in the grass group, while, the abundance of Succinivibrio, Succinivibrionaceae_UCG-002, Fibrobacter and Christensenellaceae_R-7_group were significantly (P < 0.05) higher in the grass group. Serum metabolomics analysis combined with enrichment analysis revealed that serum metabolites were influenced by feed type as well as the metabolic pathway, and significantly affected serum metabolites involved in amino acids, peptides, and analogues, bile acids, alcohols and derivatives, linoleic acids derivatives, fatty acids and conjugates. Most of the amino acids, peptides, and analogues metabolites were positively associated with the fatty acid contents. Among the bile acids, alcohols and derivatives metabolites, glycocholic was positively associated with all fatty acid contents, except C18:0, while 25-Hydroxycholesterol and lithocholic acid metabolites were negatively associated with most of the fatty acid contents. CONCLUSION: Correlation analysis of the association of microbiome with metabolite features, metabolite features with fatty acid provides us with comprehensive understanding of the composition and function of microbial communities. Associations between utilization or production were widely identified among affected microbiome, metabolites and fatty acid, and these findings will contribute to the direction of future research in lamb.

13.
Huan Jing Ke Xue ; 44(12): 6630-6642, 2023 Dec 08.
Artigo em Chinês | MEDLINE | ID: mdl-38098390

RESUMO

The steel industry is one of the most carbon-intensive industries in China. To analyze the carbon emission and carbon reduction potential of the steel industry in the life cycle, a carbon emission accounting model was built from the perspective of the life cycle. Taking the year 2020 as an example, an empirical analysis was carried out to predict and evaluate the carbon reduction potential of the steel industry in the life cycle by optimizing four variables, namely, scrap usage, fossil fuel combustion, electric power carbon footprint factor, and clean transportation proportion. At the same time, sensitivity analysis was used to determine the key degree of factors affecting carbon emission reduction in the life cycle of steel. The results showed that in 2020, the total life cycle CO2 emissions of the steel industry in China was approximately 2.404 billion tons, of which the acquisition and processing of raw materials were the key links in the carbon emissions of the steel industry, accounting for more than 98% of the total life cycle CO2 emissions of the steel industry. From the analysis of CO2 emission source categories, fossil fuel savings and outsourcing power cleaning were the top priorities of carbon reduction in the steel industry. By 2025, the steel industry could achieve 20%, 6%, 5%, and 1% carbon emission reduction potential by respectively promoting low-carbon technology, optimizing the power structure, increasing the number of steel scraps, and increasing the proportion of clean transportation. The fossil fuel combustion had the most significant impact on the life cycle CO2 emissions of the steel industry, followed by the electric power carbon footprint factor and scrap steelmaking usage. With regard to low-carbon technologies in the steel industry, in the short term, the promotion of low-carbon technologies in the steel rolling process and blast furnace ironmaking process should be the main focus. Later, with the gradual increase in the proportion of electric furnace steelmaking, the promotion of low-carbon technologies in the electric furnace steelmaking process will significantly improve the carbon emission reduction potential of the steel industry throughout its life cycle.

14.
Microbiol Spectr ; 11(6): e0222823, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37947518

RESUMO

IMPORTANCE: Ensiled whole-plant oats are an important feedstuff for ruminants in large parts of the world. Oat silage is rich in dietary fibers, minerals, vitamins, and phytochemicals beneficial to animal health. The fermentation of oat silage is a complex biochemical process that includes interactions between various microorganisms. The activity of many microbes in silage may cause an extensive breakdown of nutrition and lead to undesirable fermentation. Moreover, it is difficult to make high-quality oat silage because the number of epiphytic lactic acid bacterium microflora was lower than the requirement. Understanding the complex microbial community during the fermentation process and its relationship with community functions is therefore important in the context of developing improved fermentation biotechnology systems. These results suggested that the addition of Lactobacillus plantarum or Lactobacillus buchneri regulated the ensiling performance and microbial community in oat silage by shaping the metabolic pathways.


Assuntos
Avena , Microbiota , Animais , Silagem/análise , Silagem/microbiologia , Lactobacillus/metabolismo , Fermentação
15.
Opt Express ; 31(17): 27973-27989, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37710862

RESUMO

Digital shearing speckle pattern interferometry (DSSPI) is a powerful interferometric technique used to visualize the slope contours undergoing static and dynamic deformations. Precise determination of the shear amount is crucial for quantitative analysis in DSSPI. However, accurately measuring the shear amount is often challenging due to factors such as optical device dimensions, deflections, aberrations, and misalignments. In this paper, we propose a novel method utilizing optical vortices deflection in pseudo-phase for shear measurement. This method eliminates the need for attaching calibration objects and replacing the light source, making it applicable to inaccessible or fragile samples. Experimental results demonstrate the effectiveness and accuracy of the proposed method in determining shear amounts in DSSPI. The method can be easily automated and integrated into existing setups, offering broader application prospects.

16.
Front Plant Sci ; 14: 1160369, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37484462

RESUMO

Objective: The objective of this study was to isolate lactic acid bacteria (LAB) from native grasses and naturally fermented silages, determine their identity, and assess their effects on silage quality and bacterial communities of the native grasses of three steppe types fermented for 60 days. Methods: Among the 58 isolated LAB strains, Limosilactobacillus fermentum (BL1) and Latilactobacillus graminis (BL5) were identified using 16S rRNA sequences. Both strains showed normal growth at 15- 45°C temperature, 3-6.5% NaCl concentration, and pH 4-9. Two isolated LAB strains (labeled L1 and L5) and two commercial additives (Lactiplantibacillus plantarum and Lentilactobacillus buchneri; designated as LP and LB, respectively) were added individually to native grasses of three steppe types (meadow steppe, MS; typical steppe, TS; desert steppe, DS), and measured after 60 d of fermentation. The fresh material (FM) of different steppe types was treated with LAB (1 × 105 colony forming units/g fresh weight) or distilled water (control treatment [CK]). Results: Compared with CK, the LAB treatment showed favorable effects on all three steppe types, i.e., reduced pH and increased water-soluble carbohydrate content, by modulating the microbiota. The lowest pH was found in the L5 treatment of three steppe types, at the same time, the markedly (p < 0.05) elevated acetic acid (AA) concentration was detected in the L1 and LB treatment. The composition of bacterial community in native grass silage shifted from Pantoea agglomerans and Rosenbergiella nectarea to Lentilactobacillus buchneri at the species level. The abundance of Lentilactobacillus buchneri and Lactiplantibacillus plantarum increased significantly in L1, L5, LP, and LB treatments, respectively, compared with CK (p < 0.05). Conclusion: In summary, the addition of LAB led to the shifted of microbiota and modified the quality of silage, and L. fermentum and L. graminis improved the performance of native grass silage.

17.
Front Microbiol ; 14: 1197059, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37520349

RESUMO

Objective: The objectives of this study were to evaluate the effects of different forage proportions in the fermented total mixed ration (FTMR) on growth performance, muscle fatty acid profile, and rumen microbiota of lambs. Methods: Thirty 6-month-old small tail Han sheep × Ujumqin lambs with initial body weight (BW) of 27.8 ± 0.90 kg were selected for the test and divided into two groups of 15 sheep in each treatment (three pens per treatment and five lambs per pen) according to the principle of homogeneity. Two isoenergetic and isonitrogenous diets were formulated according to the NRC. The diet treatments were designed as (1) OH treatment containing 25% alfalfa hay and 35% oat hay, and (2) AH treatment containing 35% alfalfa hay with 25% oat hay. The forage-to-concentrate ratio for both diets was 65: 35 (DM basis). Three replicates were randomly selected from each treatment to determine growth performance, fatty acid profile and rumen bacterial communities in lambs. Results: Results revealed no statistically significant (p > 0.05) differences in dry matter intake and average daily gain between the two diet groups. Cholesterol and intramuscular fat were significantly (p > 0.05) higher in the AH group, while no statistically significant difference (p > 0.05) was found in pH24 value. The muscle fatty acid compositions of lambs were obviously (p < 0.05) influenced by the diet treatments. Compared with the OH group, the C16:1, C17:0, and C20:3n6 contents were higher (p < 0.05) in the AH group, whereas the content of C18:1n9c, C20:1, C18:3n3, and C22:6n3 was obviously (p < 0.05) increased in the OH group. The monounsaturated fatty acid (MUFA) contents were significantly higher in the OH group, whereas no significant differences (p > 0.05) were detected in saturated fatty acid (SFA) and polyunsaturated fatty acid (PUFA) contents among the two diet treatments. Bacterial composition was generally separated into two clusters based on principal coordinate analysis, and the OH group had a higher Shannon index. The relative abundance at the genes level of the Rikenellaceae_RC9_gut_group was obviously (p < 0.05) increased in the AH group and the relative abundances of Prevotella_1, Fibrobacter, and Bacteroidales_UCG_001_unclassified were obviously (p < 0.05) enriched in the OH group. Integrated correlation analysis also underscored a possible link between the muscle fatty acid compositions and significantly altered rumen microbiota. Conclusion: Overall, oat-based roughage in FTMR could promote a beneficial lipid pattern in the Longissimus lumborum muscles of lambs. These findings provide a potential insight into diet effects on fatty acid profile and the rumen microbiome of lambs, which may help make decisions regarding feeding.

18.
Sci Total Environ ; 894: 165056, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37348729

RESUMO

Soil microbial communities have resistance to environmental stresses and thus can maintain ecosystem functions such as decomposition, nutrient provisioning, and plant pathogen control. However, predominant factors driving community resistance of soil microbiome to heavy metal pollution stresses and ecosystem functional stability are still unclear, limiting our ability to forecast how soil pollution might affect ecosystem sustainability. Here, we conducted microcosm experiments to estimate the importance of soil microbiome in predicting community resistance to heavy metal mercury (Hg) stress in paired paddy and upland fields. We found that community resistance of soil microbiome was strongly correlated with ecosystem functional stability, so were the individual groups of organisms such as bacteria, saprotrophic fungi, and phototrophic protists. The core phylotypes within soil microbiome had a major contribution to community resistance, which was essential for the maintenance of functional stability. Co-occurrence network further confirmed that community resistances of main ecological clusters were positively correlated with ecosystem functional stability. Together, our results provide new insights into the link between community resistance and functional stability, and highlight the importance of core microbiota in driving community resistance to environmental stresses and maintain functional stability.


Assuntos
Mercúrio , Metais Pesados , Microbiota , Ecossistema , Mercúrio/toxicidade , Mercúrio/análise , Solo , Microbiologia do Solo , Fungos
19.
Phys Chem Chem Phys ; 25(19): 13542-13549, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37133393

RESUMO

The fibrillation process of human insulin (HI) is closely related to the therapy for type II diabetes (T2D). Due to changes in the spatial structure of HI, the fibrillation process of HI takes place in the body, which leads to a significant decrease in normal insulin levels. L-Lysine CDs with a size of around 5 nm were synthesized and used to adjust and control the fibrillation process of HI. ThT fluorescence analysis and transmission electron microscopy (TEM) characterization of the CDs showed the role of HI fibrillation from the perspective of the kinetics of HI fibrillation and regulation. Isothermal titration calorimetry (ITC) was used to explore the regulatory mechanism of CDs at all stages of HI fibrillation from the perspective of thermodynamics. Contrary to common sense, when the concentration of CDs is less than 1/50 of the HI, CDs will promote the growth of fibres, while a high concentration of CDs will inhibit the growth of fibres. The experimental results of ITC clearly prove that different concentrations of CDs will correspond to different pathways of the combination between CDs and HI. CDs have a strong ability to combine with HI during the lag time, and the degree of combination has become the main factor influencing the fibrillation process.


Assuntos
Diabetes Mellitus Tipo 2 , Pontos Quânticos , Humanos , Lisina , Pontos Quânticos/química , Carbono/química , Diabetes Mellitus Tipo 2/tratamento farmacológico , Insulina
20.
Sci Rep ; 13(1): 7352, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147350

RESUMO

Lung cancer is a complex disease influenced by a variety of genetic and environmental factors. The cytokine interleukin 1 encoded by IL1B is an important mediator of the inflammatory response, and is involved in a variety of cellular activities. The effect of single nucleotide polymorphisms (SNP) at IL1B has been investigated in relation to cancer with inconsistent results. This Northeastern-Chinese case-control study involving 627 cases and 633 controls evaluated the role of three haplotype-tagging single nucleotide polymorphisms (htSNP) (rs1143633, rs3136558 and rs1143630) representing 95% of the common haplotype diversity across the IL1B gene and assessed interactions with IL1B, PPP1R13L, POLR1G and smoking duration in relation to lung cancer risk. The analyses of five genetic models showed associations with lung cancer risk for rs1143633 in the dominant model [adjusted-OR (95% CI) = 0.67 (0.52-0.85), P = 0.0012] and rs3136558 in the recessive model [adjusted-OR (95% CI) = 1.44 (1.05-1.98), P = 0.025]. Haplotype4 was associated with increased lung cancer risk [adjusted-OR (95% CI) = 1.55 (1.07-2.24), P = 0.021]. The variant G-allele of rs1143633 was protective in smoking sub-group of > 20 years. Using multifactor dimensionality reduction (MDR) analyses, we identified the three best candidate models of interactions and smoking-duration or IL1B rs1143633 as main effect. In conclusion, our findings suggest that IL1B SNP rs1143633 may associate with lower risk of lung cancer, confirming previously identified marker; IL1B SNP rs3136558 and haplotype4 consisting of IL1B htSNPs may associate with increasing risk of lung cancer; interactions of IL1B with POLR1G or PPP1R13L or smoking-duration, which is independent or combined, may involve in risk of lung cancer and lung squamous cell carcinoma.


Assuntos
População do Leste Asiático , Neoplasias Pulmonares , Humanos , Estudos de Casos e Controles , Predisposição Genética para Doença , Haplótipos , Interleucina-1beta/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/genética , Polimorfismo de Nucleotídeo Único , Proteínas Repressoras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...