Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 416: 126174, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492949

RESUMO

Based on the transformation among metal fractions defined by the Tessier sequential extraction procedure and integrated risk information assessed by delayed geochemical hazard (DGH) methodology, including development paths and their burst probabilities, trigger conditions, and the contribution of each metal to risk development, an approach was proposed to provide an early warning on risk development in metal compound-contaminated sites and tested in a lead and cadmium-contaminated site. Risk assessment indicated that the site was at a high to extremely high ecological risk. DGH analysis revealed that the transformation from the fraction bound to carbonate and organic matter to the exchangeable fraction was dominant in the development of either single or combined lead and cadmium risk, which was triggered by soil acidification and the continuous decline of soil organic matter; risk development might have occurred in 6.52-80.4% of the case site with burst probabilities of 6.52-80.4%, 8.70-39.1% and 8.70-80.4% for lead risk, cadmium risk and combined lead-cadmium risk, respectively; with the dominant role of lead, the two metals overall accelerated the development of their compound risk by changing each other's DGH paths. The proposed DGH-based approach is promising for early warning on risk development in compound contaminated sites.


Assuntos
Metais Pesados , Poluentes do Solo , Cádmio/análise , Cádmio/toxicidade , Chumbo/toxicidade , Metais Pesados/análise , Medição de Risco , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
2.
Future Gener Comput Syst ; 98: 238-251, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32287562

RESUMO

In biomedical domain, abbreviations are appearing more and more frequently in various data sets, which has caused significant obstacles to biomedical big data analysis. The dictionary-based approach has been adopted to process abbreviations, but it cannot handle ad hoc abbreviations, and it is impossible to cover all abbreviations. To overcome these drawbacks, this paper proposes an automatic abbreviation expansion method called LMAAE (Language Model-based Automatic Abbreviation Expansion). In this method, the abbreviation is firstly divided into blocks; then, expansion candidates are generated by restoring each block; and finally, the expansion candidates are filtered and clustered to acquire the final expansion result according to the language model and clustering method. Through restrict the abbreviation to prefix abbreviation, the search space of expansion is reduced sharply. And then, the search space is continuous reduced by restrained the effective and the length of the partition. In order to validate the effective of the method, two types of experiments are designed. For standard abbreviations, the expansion results include most of the expansion in dictionary. Therefore, it has a high precision. For ad hoc abbreviations, the precisions of schema matching, knowledge fusion are increased by using this method to handle the abbreviations. Although the recall for standard abbreviation needs to be improved, but this does not affect the good complement effect for the dictionary method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...