Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(18): e2207493, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37097734

RESUMO

In nature, some semiaquatic arthropods evolve biomechanics for jumping on the water surface with the controlled burst of kinetic energy. Emulating these creatures, miniature jumping robots deployable on the water surface have been developed, but few of them achieve the controllability comparable to biological systems. The limited controllability and agility of miniature robots constrain their applications, especially in the biomedical field where dexterous and precise manipulation is required. Herein, an insect-scale magnetoelastic robot with improved controllability is designed. The robot can adaptively regulate its energy output to generate controllable jumping motion by tuning magnetic and elastic strain energy. Dynamic and kinematic models are developed to predict the jumping trajectories of the robot. On-demand actuation can thus be applied to precisely control the pose and motion of the robot during the flight phase. The robot is also capable of making adaptive amphibious locomotion and performing various tasks with integrated functional modules.


Assuntos
Robótica , Locomoção/fisiologia , Movimento (Física) , Fenômenos Biomecânicos , Água
2.
Cyborg Bionic Syst ; 4: 0015, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36939416

RESUMO

With the development of materials science and micro-nano fabrication techniques, miniature soft robots at millimeter or submillimeter size can be manufactured and actuated remotely. The small-scaled robots have the unique capability to access hard-to-reach regions in the human body in a noninvasive manner. To date, it is still challenging for miniature robots to accurately move in the diverse and dynamic environments in the human body (e.g., in blood flow). To effectively locomote in the vascular system, miniature swimmers with upstream swimming capability are required. Herein, we design and fabricate a miniature robotic swimmer capable of performing ultrafast swimming in a fluidic environment. The maximum velocity of the swimmer in water is 30 cm/s, which is 60 body lengths. Moreover, in a tubular environment, the swimmer can still obtain a swimming velocity of 17 cm/s. The swimmer can also perform upstream swimming in a tubular environment with a velocity of 5 cm/s when the flow speed is 10 cm/s. The ultrasound-guided navigation of the swimmer in a phantom mimicking a blood vessel is also realized. This work gives insight into the design of agile undulatory milliswimmers for future biomedical applications.

3.
ACS Nano ; 16(11): 19025-19037, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36367748

RESUMO

The rapidly transformed morphology of natural swarms enables fast response to environmental changes. Artificial microswarms can reconfigure their swarm patterns like natural swarms, which have drawn extensive attention due to their active adaptability in complex environments. However, as a prerequisite for biomedical applications of microswarms in confined environments, achieving on-demand control of pattern transformation rates remains a challenge. In this work, we report a strategy for optimizing pattern transformation rates of colloidal microswarms by coordinating the inner interactions. The influences of magnetic field parameters on pattern transformation rates are theoretically and experimentally studied, which elucidates the mechanism for optimal transformation rate control. The feasibility of the strategy is then validated in viscous Newtonian fluids and non-Newtonian biofluids. Moreover, the strategy is further validated in dynamic flow environments, exhibiting a promising future for practical applications in targeted delivery tasks with an optimal pattern transformation manner.


Assuntos
Campos Magnéticos , Magnetismo , Viscosidade
4.
Sci Adv ; 8(29): eabm5752, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35857830

RESUMO

Inspired by the collective intelligence in natural swarms, microrobotic agents have been controlled to form artificial swarms for targeted drug delivery, enhanced imaging, and hyperthermia. Different from these well-investigated tasks, this work aims to develop microrobotic swarms for embolization, which is a clinical technique used to block blood vessels for treating tumors, fistulas, and arteriovenous malformations. Magnetic particle swarms were formed for selective embolization to address the low selectivity of the present embolization technique that is prone to cause complications such as stroke and blindness. We established an analytical model that describes the relationships between fluid viscosity, flow rate, branching angle, magnetic field strength, and swarm integrity, based on which an actuation strategy was developed to maintain the swarm integrity inside a targeted region under fluidic flow conditions. Experiments in microfluidic channels, ex vivo tissues, and in vivo porcine kidneys validated the efficacy of the proposed strategy for selective embolization.

5.
ACS Nano ; 16(1): 604-616, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34985859

RESUMO

Untethered small-scale robots offer great promise for medical applications in complex biological environments. However, challenges remain in the control and medical imaging of a robot for targeted delivery inside a living body, especially in flowing conditions (e.g., blood vessels). In this work, we report a strategy to autonomously navigate a miniature helical robot in dynamic blood flow under ultrasound Doppler imaging guidance. A magnetic torque and force-hybrid control approach is implemented, enabling the actuation of a millimeter-scale helical robot against blood flow under a rotating magnetic field with a controllable field gradient. Experimental results demonstrate that the robot (length 7.30 mm; diameter 2.15 mm) exhibits controlled navigation in vascular environments, including upstream and downstream navigation in flowing and pulsatile flowing blood with flow rates up to 24 mL/min (mean flow velocity: 14.15 mm/s). During navigation, the rotating robot-induced Doppler signals enable real-time localization and tracking in flowing and pulsatile flowing blood environments. Moreover, the robot can be selectively navigated along different paths by actively controlling the robot's orientation. We apply this autonomous strategy for localizing thrombus and accelerating thrombolysis rate. Compared with conventional tissue plasminogen activator (tPA) thrombolysis, the robot-enhanced shear stress and tPA convection near the clot-blood interface increase the unblocking and thrombolysis efficiency up to 4.8- and 3.5-fold, respectively. Such a medical imaging-guided navigation strategy provides simultaneous robot navigation and localization in complex dynamic biological environments, providing an intelligent approach toward real-time targeted delivery and diagnostic applications in vivo.


Assuntos
Robótica , Ativador de Plasminogênio Tecidual , Magnetismo , Campos Magnéticos , Terapia Trombolítica
6.
Adv Mater ; 33(37): e2100070, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34337789

RESUMO

Emulating natural swarm intelligence with group-level functionality in artificial micro/nanorobotic systems offers an opportunity to sublimate the limited functions of individuals and revolutionize their applications. However, achieving synchronous operation of microswarms with environmental adaptability and cooperative tasking capability remains a challenge. Here, an adaptive and heterogeneous colloidal magnetic microswarm with domino reaction encoded cooperative functions is presented. Through programming external magnetic fields, the system self-organizes into two swarm states, that is, vortex and ribbon microswarms, which can switch between each other reversibly within seconds, allowing to traverse tortuous, branched, and confined environments through adaptive morphological transformation. By specializing subgroups of building blocks with separate functions, cooperative tasking capability is integrated into the heterogeneous system following a "division of labor" manner. Given targeted therapy as a proof-of-concept task, the coordinated delivery of heterogeneous colloidal system across a complex environment with an access rate higher than 90% is demonstrated, and the specialization and cooperation between building blocks to disrupt multiple growth pathways of cancer cells via domino reaction are realized. The reconfigurable microswarm with hierarchical functionality presents a bioinspired approach to adapt to environmental variations and address multitasking requirements, which advances the development of microrobotic swarms and promises major benefits in biomedical fields.

7.
Sci Adv ; 7(9)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33637532

RESUMO

Swarming micro/nanorobots offer great promise in performing targeted delivery inside diverse hard-to-reach environments. However, swarm navigation in dynamic environments challenges delivery capability and real-time swarm localization. Here, we report a strategy to navigate a nanoparticle microswarm in real time under ultrasound Doppler imaging guidance for active endovascular delivery. A magnetic microswarm was formed and navigated near the boundary of vessels, where the reduced drag of blood flow and strong interactions between nanoparticles enable upstream and downstream navigation in flowing blood (mean velocity up to 40.8 mm/s). The microswarm-induced three-dimensional blood flow enables Doppler imaging from multiple viewing configurations and real-time tracking in different environments (i.e., stagnant, flowing blood, and pulsatile flow). We also demonstrate the ultrasound Doppler-guided swarm formation and navigation in the porcine coronary artery ex vivo. Our strategy presents a promising connection between swarm control and real-time imaging of microrobotic swarms for localized delivery in dynamic environments.

8.
ACS Nano ; 15(3): 4429-4439, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33599480

RESUMO

Natural swarms can be formed by various creatures. The swarms can conduct demanded behaviors to adapt to their living environments, such as passing through harsh terrains and protecting each other from predators. At micrometer and nanometer scales, formation of a swarm pattern relies on the physical or chemical interactions between the agents owing to the absence of an on-board device. Independent pattern formation of different swarms, especially under the same input, is a more challenging task. In this work, a swarm of nickel nanorods is proposed and by exploiting its different behavior with the nanoparticle swarm, independent pattern formation of diverse microrobotic swarms under the same environment can be conducted. A mathematical model for the nanorod swarm is constructed, and the mechanism is illustrated. Two-region pattern changing of the nanorod swarm is discovered and compared with the one-region property of the nanoparticle swarm. Experimental characterization of the nanorod swarm pattern is conducted to prove the concept and validate the effectiveness of the theoretical analysis. Furthermore, independent pattern formation of different microrobotic swarms was demonstrated. The pattern of the nanorod swarm could be adjusted while the other swarm was kept unchanged. Simultaneous pattern changing of two swarms was achieved as well. As a fundamental research on the microrobotic swarm, this work presents how the nanoscale magnetic anisotropy of building agents affects their macroscopic swarm behaviors and promotes further development on the independent control of microrobotic swarms under a global field input.

9.
ACS Nano ; 15(3): 5056-5067, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33634695

RESUMO

Biofilm is difficult to thoroughly cure with conventional antibiotics due to the high mechanical stability and antimicrobial barrier resulting from extracellular polymeric substances. Encouraged by the great potential of magnetic micro-/nanorobots in various fields and their enhanced action in swarm form, we designed a magnetic microswarm consisting of porous Fe3O4 mesoparticles (p-Fe3O4 MPs) and explored its application in biofilm disruption. Here, the p-Fe3O4 MPs microswarm (p-Fe3O4 swarm) was generated and actuated by a simple rotating magnetic field, which exhibited the capability of remote actuation, high cargo capacity, and strong localized convections. Notably, the p-Fe3O4 swarm could eliminate biofilms with high efficiency due to synergistic effects of chemical and physical processes: (i) generating bactericidal free radicals (•OH) for killing bacteria cells and degrading the biofilm by p-Fe3O4 MPs; (ii) physically disrupting the biofilm and promoting •OH penetration deep into biofilms by the swarm motion. As a demonstration of targeted treatment, the p-Fe3O4 swarm could be actuated to clear the biofilm along the geometrical route on a 2D surface and sweep away biofilm clogs in a 3D U-shaped tube. This designed microswarm platform holds great potential in treating biofilm occlusions particularly inside the tiny and tortuous cavities of medical and industrial settings.


Assuntos
Biofilmes , Magnetismo , Antibacterianos/farmacologia , Fenômenos Magnéticos , Porosidade
10.
Nat Commun ; 9(1): 3260, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30131487

RESUMO

Various types of structures self-organised by animals exist in nature, such as bird flocks and insect swarms, which stem from the local communications of vast numbers of limited individuals. Through the designing of algorithms and wireless communication, robotic systems can emulate some complex swarm structures in nature. However, creating a swarming robotic system at the microscale that embodies functional collective behaviours remains a challenge. Herein, we report a strategy to reconfigure paramagnetic nanoparticles into ribbon-like swarms using oscillating magnetic fields, and the mechanisms are analysed. By tuning the input fields, the microswarm can perform a reversible elongation with an extremely high aspect ratio, as well as splitting and merging. Moreover, we investigate the behaviours of the microswarm when it encounters solid boundaries, and demonstrate that under navigation, the colloidal microswarm passes through confined channel networks towards multiple targets with high access rates and high swarming pattern stability.


Assuntos
Magnetismo , Nanopartículas/química , Simulação por Computador , Difusão , Hidrodinâmica , Locomoção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...