Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Yi Chuan ; 45(2): 165-175, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36927663

RESUMO

The currently widely used CRISPR-Cas9 genome editing technology enables the editing of target genes (knock-out or knock-in) with high accuracy and efficiency. Guided by the small guide RNA, the Cas9 nuclease induces a DNA double-strand break at the targeted genomic locus. The DNA double-strand break can be repaired by the homology-directed repair pathway in the presence of a repair template. With the repair template containing the coding sequence of a fluorescent tag, the targeted gene can be inserted with the sequence of a fluorescent tag at the designed position. The genome editing mediated labeling of endogenous proteins with fluorescent tags avoids the potential artifacts caused by gene overexpression and substantially improves the reproductivity of imaging experiments. This protocol focuses on creating mammalian cell lines with endogenous proteins tagged with fluorescent proteins or self-labeling protein tags using CRISPR-Cas9 genome editing.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Edição de Genes/métodos , Proteína 9 Associada à CRISPR/genética , Reparo de DNA por Recombinação , DNA , Mamíferos/genética
2.
Int J Mol Sci ; 20(3)2019 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-30717398

RESUMO

Melatonin (N-acetyl-5-methoxytryptamine) is involved in many developmental processes and responses to various abiotic stresses in plants. Most of the studies on melatonin focus on its functions and physiological responses in plants, while its regulation mechanism remains unknown. Caffeic acid 3-O-methyltransferase (COMT) functions at a key step of the biosynthesis process of melatonin. In this study, a COMT-like gene, TaCOMT (Traes_1AL_D9035D5E0.1) was identified in common wheat (Triticum aestivum L.). Transient transformation in wheat protoplasts determined that TaCOMT is localized in cytoplasm. TaCOMT in wheat was induced by drought stress, gibberellin (GA)3 and 3-Indoleacetic acid (IAA), but not by ABA. In TaCOMT transgenic Arabidopsis, melatonin contents were higher than that in wild type (WT) plants. Under D-Mannitol treatment, the fresh weight of the transgenic Arabidopsis was significantly higher than WT, and transgenic lines had a stronger root system compared to WT. Drought tolerance assays in pots showed that the survival rate of TaCOMT-overexpression lines was significantly higher than that of WT lines. this phenotype was similar to that the WT lines treated with melatonin under drought condition. In addition, the TaCOMT transgenic lines had higher proline content and lower malondialdehyde (MDA) content compared to WT lines after drought treatment. These results indicated that overexpression of the wheat TaCOMT gene enhances drought tolerance and increases the content of melatonin in transgenic Arabidopsis. It could be one of the potential genes for agricultural applications.


Assuntos
Adaptação Biológica , Arabidopsis/genética , Arabidopsis/metabolismo , Secas , Expressão Gênica , Melatonina/biossíntese , Proteínas Sensíveis a N-Etilmaleimida/genética , Sequência de Aminoácidos , Proteínas Sensíveis a N-Etilmaleimida/química , Proteínas Sensíveis a N-Etilmaleimida/metabolismo , Plantas Geneticamente Modificadas , Transdução de Sinais , Estresse Fisiológico/genética , Triticum/genética , Triticum/metabolismo
3.
Int J Mol Sci ; 19(12)2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30562982

RESUMO

WRKYs are important regulators in plant development and stress responses. However, knowledge of this superfamily in soybean is limited. In this study, we characterized the drought- and salt-induced gene GmWRKY12 based on RNA-Seq and qRT-PCR. GmWRKY12, which is 714 bp in length, encoded 237 amino acids and grouped into WRKY II. The promoter region of GmWRKY12 included ABER4, MYB, MYC, GT-1, W-box and DPBF cis-elements, which possibly participate in abscisic acid (ABA), drought and salt stress responses. GmWRKY12 was minimally expressed in different tissues under normal conditions but highly expressed under drought and salt treatments. As a nucleus protein, GmWRKY12 was responsive to drought, salt, ABA and salicylic acid (SA) stresses. Using a transgenic hairy root assay, we further characterized the roles of GmWRKY12 in abiotic stress tolerance. Compared with control (Williams 82), overexpression of GmWRKY12 enhanced drought and salt tolerance, increased proline (Pro) content and decreased malondialdehyde (MDA) content under drought and salt treatment in transgenic soybean seedlings. These results may provide a basis to understand the functions of GmWRKY12 in abiotic stress responses in soybean.


Assuntos
Resistência à Doença/fisiologia , Glycine max/metabolismo , Tolerância ao Sal/fisiologia , Plântula/metabolismo , Proteínas de Soja/metabolismo , Fatores de Transcrição/metabolismo , Desidratação , Plântula/genética , Proteínas de Soja/genética , Glycine max/genética , Fatores de Transcrição/genética
4.
BMC Plant Biol ; 18(1): 320, 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30509166

RESUMO

BACKGROUND: Abiotic stress severely influences plant growth and development. MYB transcription factors (TFs), which compose one of the largest TF families, play an important role in abiotic stress responses. RESULT: We identified 139 soybean MYB-related genes; these genes were divided into six groups based on their conserved domain and were distributed among 20 chromosomes (Chrs). Quantitative real-time PCR (qRT-PCR) indicated that GmMYB118 highly responsive to drought, salt and high temperature stress; thus, this gene was selected for further analysis. Subcellular localization revealed that the GmMYB118 protein located in the nucleus. Ectopic expression (EX) of GmMYB118 increased tolerance to drought and salt stress and regulated the expression of several stress-associated genes in transgenic Arabidopsis plants. Similarly, GmMYB118-overexpressing (OE) soybean plants generated via Agrobacterium rhizogenes (A. rhizogenes)-mediated transformation of the hairy roots showed improved drought and salt tolerance. Furthermore, compared with the control (CK) plants, the clustered, regularly interspaced, short palindromic repeat (CRISPR)-transformed plants exhibited reduced drought and salt tolerance. The contents of proline and chlorophyll in the OE plants were significantly greater than those in the CK plants, whose contents were greater than those in the CRISPR plants under drought and salt stress conditions. In contrast, the reactive oxygen species (ROS) and malondialdehyde (MDA) contents were significantly lower in the OE plants than in the CK plants, whose contents were lower than those in the CRISPR plants under stress conditions. CONCLUSIONS: These results indicated that GmMYB118 could improve tolerance to drought and salt stress by promoting expression of stress-associated genes and regulating osmotic and oxidizing substances to maintain cell homeostasis.


Assuntos
Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Agrobacterium/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Desidratação , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Raízes de Plantas/microbiologia , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase em Tempo Real , Estresse Salino , Glycine max/genética , Glycine max/metabolismo , Glycine max/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia
5.
BMC Plant Biol ; 18(1): 93, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29801463

RESUMO

BACKGROUND: The calcineurin B-like protein (CBL)-interacting protein kinase (CIPK) signaling pathway responds to various abiotic stresses in plants. RESULTS: Wheat CIPK23, isolated from wheat drought transcriptome data set, was induced by multiple abiotic stresses, including drought, salt, and abscisic acid (ABA). Compared with wild-type plants, TaCIPK23-overexpression wheat and Arabidopsis showed an higher survival rate under drought conditions with enhanced germination rate, developed root system, increased accumulation of osmolytes, and reduced water loss rate. Over-expression of TaCIPK23 rendered transgenic plants ABA sensitivity, as evidenced by delayed seed germination and the induction of stomatal closure. Consistent with the ABA-sensitive phenotype, the expression level of drought- and ABA-responsive genes were increased under drought conditions in the transgenic plants. In addition, using yeast two-hybrid system, pull-down and bimolecular fluorescence complementation (BiFc) assays, TaCIPK23 was found to interact with TaCBL1 on the plasma membrane. CONCLUSIONS: These results suggest that TaCIPK23 plays important roles in ABA and drought stress responses, and mediates crosstalk between the ABA signaling pathway and drought stress responses in wheat.


Assuntos
Ácido Abscísico/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas Quinases/metabolismo , Transdução de Sinais , Triticum/enzimologia , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Secas , Genes Reporter , Germinação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas , Proteínas Quinases/genética , Plântula/enzimologia , Plântula/genética , Plântula/fisiologia , Sementes/enzimologia , Sementes/genética , Sementes/fisiologia , Cloreto de Sódio/metabolismo , Estresse Fisiológico , Triticum/genética , Triticum/fisiologia , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...