Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Horiz ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38956971

RESUMO

Photocatalysis is a widely recognized green and sustainable technology that can harness inexhaustible solar energy to carry out chemical reactions, offering the opportunity to mitigate environmental issues and the energy crisis. Photocatalysts with wide spectral response and rapid charge transfer capability are crucial for highly efficient photocatalytic activity. Atomically precise metal nanoclusters (NCs), an emerging atomic-level material, have attracted great interests owing to their ultrasmall size, unique atomic stacking, abundant surface active sites, and quantum confinement effect. In particular, the molecule-like discrete electronic energy level endows them with small-band-gap semiconductor behavior, which allows for photoexcitation in order to generate electrons and holes to participate in the photoredox reaction. In addition, metal NCs exhibit strong light-harvesting ability in the wide spectral UV-near IR region, and the diversity of optical absorption properties can be precisely regulated by the composition and structure. These merits make metal NCs ideal candidates for photocatalysis. In this review, the recent advances in atomically-precise metal NCs for photocatalytic application are summarized, including photocatalytic water splitting, CO2 reduction, organic transformation, photoelectrocatalytic reactions, N2 fixation and H2O2 production. In addition, the strategy for promoting photostability, charge transfer and separation efficiency of metal NCs is highlighted. Finally, a perspective on the challenges and opportunities for NCs-based photocatalysts is provided.

2.
Angew Chem Int Ed Engl ; : e202404629, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38845560

RESUMO

Owing to the significant attention directed toward alloy metal nanoclusters, it is crucial to explore the relationship between their structures and their performance during the electrocatalytic CO2 reduction reaction (eCO2RR) and discover potential synergistic effects for the design of novel functional nanoclusters. However, a lack of suitable analogs makes this investigation challenging. In this study, we synthesized and characterized a  pair of structural analogs, [Au8Cu1(SAdm)4(Dppm)3Cl]2+ and [Au8Ag1(SAdm)4(Dppm)3Cl]2+ (Au8Cu1 and Au8Ag1, respectively). Single-crystal X-ray diffraction analysis revealed that Au8M1 consists of a tetrahedral Au3M1 core capped by three (Dppm)Au staples, one Au2(SR)3 staple, one lone SR ligand, and a terminal Cl ligand. Ag and Cu were doped at the same site . Au8Cu1 exhibited a significantly higher CO Faradaic efficiency (FECO; ~82.2%) during eCO2RR than that of Au8Ag1 (FECO; ~33.1%). DFT demonstrated that *COOH is the key intermediate in the reduction of CO2 to CO. The formation of *COOH on Au8Cu1 is more thermodynamically stable than on Au8Ag1, and Au8Cu1 shows a smaller *CO formation energy than that on Au8Ag1, which promotes the reduction of CO2. We believe that the structural analogs Au8Cu1 and Au8Ag1 offer a suitable template for the in-depth investigation of structure-property correlations at the atomic level.

3.
Nanoscale ; 15(36): 14941-14948, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37655628

RESUMO

Although several silver-based nanoclusters have been controllably prepared and structurally determined, their electrochemical catalytic performances have been relatively unexplored (or showed relatively weak ability towards electro-catalysis). In this work, we accomplished the step-by-step enhancement of the electrocatalytic hydrogen evolution reaction (HER) efficiency based on an Ag29 cluster template. A combination of atomically precise operations, including the kernel alloying, ligand engineering, and surface activation, was exploited to produce a highly efficient Pt1Ag28-BTT-Mn(10) nano-catalyst towards HER, derived from both experimental characterization and theoretical modelling. The precision characteristic of the Ag29-based cluster system enables us to understanding the correlations between nanocluster structures and HER performances at the atomic level. Overall, the findings of this work will hopefully provide more opportunities for the customization of new cluster-based nano-catalysts with enhanced electrocatalytic capacities.

4.
Small ; 19(36): e2301357, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37127865

RESUMO

The precise self-assembly of building blocks at atomic level provides the opportunity to achieve clusters with advanced catalytic properties. However, most of the current self-assembled materials are fabricated by 1/2D assembly of blocks. High dimensional (that is, 3D) assembly is widely believed to improve the performance of cluster. Herein, the effect of 3D assembly on the activity for electrocatalytic CO2 reduction reaction (CO2 RR) is investigated by using a range of clusters (Au8 Ag55 , Au8 Ag57 , Au12 Ag60 ) based on 3D assembly of M13 unit as models. Although three clusters have almost the same sizes and geometric structures, Au8 Ag55 exhibits the best CO2 RR performance due to the strong CO2 adsorption capacity and effective inhibition of H2 evolution competition reaction. The deep insight into the superior activity of Au8 Ag55 is the unique electronic structure attributed to the charge segregation. This study not only demonstrates that the assembly mode greatly affects the catalytic activity, but also offers an idea for rational designing and precisely constructing catalysts with controllable activities.

5.
Cancer Manag Res ; 14: 1457-1469, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35444465

RESUMO

Background: Lung metastasis is a common metastasis site of colorectal cancer which largely reduces the quality of life and survival rates of patients. The discovery of potential novel diagnostic biomarkers is very meaningful for the early diagnosis of colorectal cancer with lung metastasis. Methods: In the present study, the metabonomic profiling of serum samples of lung metastasis mice was analyzed by 1H-nuclear magnetic resonance (1H-NMR). Principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and orthogonal partial least squares discriminant analysis (OPLS-DA) were used to elucidate the distinguishing metabolites between different groups, and all achieved excellent separations, which indicated that metastatic mice could be differentiated from control mice based on the metabolic profiles at serum levels. Furthermore, during lung metastasis of colorectal cancer, metabolic phenotypes changed significantly, and some of metabolites were identified. Results: Among these metabolites, approximately 15 were closely associated with the lung metastasis process. Pathway enrichment analysis results showed deregulation of metabolic pathways participating in the process of lung metastasis, such as synthesis and degradation of ketone bodies pathway, amino acid metabolism pathway and pyruvate metabolism pathway. Conclusion: The present study demonstrated the metabolic disturbances of serum samples of mice during the lung metastasis process of colorectal cancer and provides potential diagnostic biomarkers for the disease.

6.
Chem Rev ; 120(2): 526-622, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30901198

RESUMO

Improving the knowledge of the relationship between structure and properties is fundamental in catalysis. Recently, researchers have developed a variety of well-controlled methods to synthesize atomically precise metal nanoclusters (NCs). NCs have shown high catalytic activity and unique selectivity in many catalytic reactions, which are related to their ultrasmall size, abundant unsaturated active sites, and unique electronic structure different from that of traditional nanoparticles (NPs). More importantly, because of their definite structure and monodispersity, they are used as model catalysts to reveal the correlation between catalyst performance and structure at the atomic scale. Therefore, this review aims to summarize the recent progress on NCs in catalysis and provide potential theoretical guidance for the rational design of high-performance catalysts. First a brief summary of the synthetic strategies and characterization methods of NCs is provided. Then the primary focus of this review-the model catalyst role of NCs in catalysis-is illustrated from theoretical and experimental perspectives, particularly in electrocatalysis, photocatalysis, photoelectric conversion, and catalysis of organic reactions. Finally, the main challenges and opportunities are examined for a deep understanding of the key catalytic steps with the goal of expanding the catalytic application range of NCs.

7.
Dalton Trans ; 48(37): 13921-13924, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31508627

RESUMO

Herein, the ligands' effect in Cu(i) clusters was initially explored. The results demonstrate that the Se atom possesses more coordination modes with Cu (µ2, µ3, µ4, µ6) than S, which significantly modulates the atom-packing mode of Cu(i) clusters. Importantly, this also endows these clusters with different temperature-dependent luminescent behaviours.

8.
Nanoscale ; 10(21): 10166-10172, 2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-29786738

RESUMO

Chemically-triggered drug delivery systems (DDSs) have been extensively studied as they do not require specialized equipment to deliver the drug and can deeply penetrate human tissue. However, their syntheses are complicated and they tend to be cytotoxic, which restricts their clinical utility. In this work, the self-regulated drug loading and release capabilities of peptide-protected gold nanoclusters (Pep-Au NCs) are investigated using vancomycin (Van) as the model drug. Gold nanoclusters (Au NCs) coated with a custom-designed pentapeptide are synthesized as drug delivery nanocarriers and loaded with Van - a spontaneous process reliant on the specific binding between Van and the custom-designed peptide. The Van-loaded Au NCs show comparable antimicrobial activity with Van on its own, and the number of Van released by the Pep-Au NCs is found to be proportional to the amount of bacteria present. The controlled nature of the Van release is very encouraging, and predominantly due to the stronger binding affinity of Van with bacteria than that with Au NCs. In addition, these fluorescent Au NCs could also be used to construct temperature sensors, which enable the in vitro and in vivo bioimaging.


Assuntos
Sistemas de Liberação de Medicamentos , Ouro , Nanopartículas Metálicas/química , Peptídeos/química , Animais , Células CHO , Cricetulus , Humanos , Células MCF-7 , Masculino , Camundongos Nus , Microscopia Confocal , Imagem Óptica , Vancomicina/administração & dosagem
9.
Nanoscale ; 6(22): 13754-60, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25285780

RESUMO

We detail a facile method for enhancing the Raman signals of as-grown graphene on Cu foils by depositing gold nanoislands (Au Nis) onto the surface of graphene. It is found that an enhancement of up to 49 fold in the graphene Raman signal has been achieved by depositing a 4 nm thick Au film. The enhancement is considered to be related to the coupling between graphene and the plasmon modes of Au Nis, as confirmed by the finite element simulations. The plasmonic effect of the Au/graphene/Cu hybrid platform leads to a strong absorption at the resonant wavelength whose position shifts from visible light (640 nm) to near-infrared (1085 nm) when the thickness of Au films is increased from 2 nm to 18 nm. Finally, we demonstrate that hybrid substrates are reliable surface-enhanced Raman scattering (SERS) systems, showing an enhancement factor of ∼10(6) for dye molecules Rhodamine B and Rhodamine 6G with uniform and stable response and a detection limit of as low as 0.1 nM for Sudan III and Sudan IV.

10.
Nanoscale ; 6(19): 11112-20, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25214169

RESUMO

The interactions between visible light and sub-nanometer gaps were investigated by sandwiching graphene between two layers of vertically stacked Au nanoparticles. The optical properties of such a hybrid film have been effectively tuned by embedding a monolayer graphene, enabling a suppressed transmission of ∼16% accompanied by a red-shift of the resonant wavelength. Finite element simulations have shown that the strong coupling between two layers of plasmonic Au nanoparticles leads to an electric field enhancement of up to 88 times in graphene defined vertical gaps, in contrast to that of 14 times in the horizontal gaps between Au nanoparticles formed in the fabrication process. In addition, the size of gaps and thus the field enhancement can be readily tuned by the number of graphene layers sandwiched between Au nanoparticles. When being used as surface-enhanced Raman scattering (SERS) substrates, the Au nanoparticle/graphene/Au nanoparticle structures have demonstrated high Raman enhancement factors of up to 1.6 × 10(8) for RhB and 2.5 × 10(8) for R6G, and a detection limit of as low as 0.1 nM for Sudan III and methylene blue molecules.

11.
Sci Rep ; 4: 5768, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25169810

RESUMO

Lithium vanadium phosphate (Li3V2(PO4)3, LVP)/reduced graphene oxide (rGO) composite is prepared with a rheological method followed by heat treatment. The size and interface of LVP particles, two important merits for a cathode material, can be effectively tuned by the rGO in the composite, which plays as surfactant to assist sol-gelation and simultaneously as conductive carbon coating. As a consequence, the composite with 7.0 ± 0.4 wt.% rGO shows a capacity of 141.6 mAh g(-1) at 0.075 C, and a rate capacity of 119.0 mAh g(-1) at 15 C with respect to the mass of LVP/rGO composite, and an excellent cycling stability that retains 98.7% of the initial discharge capacity after 50 cycles. The improved electrochemical performance is attributed to the well-controlled rGO content that yields synergic effects between LVP and rGO. Not only do the rGO sheets reduce the size of LVP particles that favor the Li(+) ion migration and the electron transfer during charging and discharging, but also contribute to the reversible lithium ions storage.

12.
Anal Chem ; 85(6): 3160-5, 2013 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-23438694

RESUMO

The chemical sensing for the convenient detection of mercuric ion (II) (Hg(2+)) have been widely explored with the use of various sensing materials and techniques. It still remains a challenge to achieve ultrasensitive but simple, rapid, and inexpensive detection to metal ions. Here we report a surface-enhanced Raman scattering (SERS) chip for the femtomolar (fM) detection of Hg(2+) by employing silver-coated gold nanoparticles (Au@Ag NPs) together with an organic ligand. 4,4'-Dipyridyl (Dpy) can control the aggregation of Au@Ag NPs via its dual interacting sites to Ag nanoshells to generate strong Raman hot spots and SERS readouts. However, the presence of Hg(2+) can inhibit the aggregation of Au@Ag NPs by the coordination with Dpy, and as a result the SERS signals of Dpy are quenched. On the basis of these findings, a SERS chip has been fabricated by the assembly of Au@Ag NPs on a piece of silicon wafer and the further modification with Dpy. The exchange of Dpy from the chip into the aqueous Hg(2+) droplet results in the quenching of Raman signals of Dpy, responding to 10 fM Hg(2+) that is about 6 orders of magnitude lower than the limit defined by the U.S. Environmental Protection Agency in drinkable water. Each test using the SERS chip only needs a droplet of 20 µL sample and is accomplished within ∼4 min. The SERS chip has also been applied to the quantification of Hg(2+) in milk, juice, and lake water.


Assuntos
Mercúrio/análise , Nanopartículas Metálicas/química , Análise Espectral Raman/métodos , Cromatografia Líquida/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...