Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38349833

RESUMO

Cross-subject electroencephalogram (EEG) based seizure subtype classification is very important in precise epilepsy diagnostics. Deep learning is a promising solution, due to its ability to automatically extract latent patterns. However, it usually requires a large amount of training data, which may not always be available in clinical practice. This paper proposes Multi-Branch Mutual-Distillation (MBMD) Transformer for cross-subject EEG-based seizure subtype classification, which can be effectively trained from small labeled data. MBMD Transformer replaces all even-numbered encoder blocks of the vanilla Vision Transformer by our designed multi-branch encoder blocks. A mutual-distillation strategy is proposed to transfer knowledge between the raw EEG data and its wavelets of different frequency bands. Experiments on two public EEG datasets demonstrated that our proposed MBMD Transformer outperformed several traditional machine learning and state-of-the-art deep learning approaches. To our knowledge, this is the first work on knowledge distillation for EEG-based seizure subtype classification.


Assuntos
Epilepsia , Convulsões , Humanos , Convulsões/diagnóstico , Aprendizado de Máquina , Eletroencefalografia , Fontes de Energia Elétrica
2.
Artigo em Inglês | MEDLINE | ID: mdl-38032784

RESUMO

Epilepsy is a pervasive neurological disorder affecting approximately 50 million individuals worldwide. Electroencephalogram (EEG) based seizure subtype classification plays a crucial role in epilepsy diagnosis and treatment. However, automatic seizure subtype classification faces at least two challenges: 1) class imbalance, i.e., certain seizure types are considerably less common than others; and 2) no a priori knowledge integration, so that a large number of labeled EEG samples are needed to train a machine learning model, particularly, deep learning. This paper proposes two novel Mixture of Experts (MoE) models, Seizure-MoE and Mix-MoE, for EEG-based seizure subtype classification. Particularly, Mix-MoE adequately addresses the above two challenges: 1) it introduces a novel imbalanced sampler to address significant class imbalance; and 2) it incorporates a priori knowledge of manual EEG features into the deep neural network to improve the classification performance. Experiments on two public datasets demonstrated that the proposed Seizure-MoE and Mix-MoE outperformed multiple existing approaches in cross-subject EEG-based seizure subtype classification. Our proposed MoE models may also be easily extended to other EEG classification problems with severe class imbalance, e.g., sleep stage classification.


Assuntos
Epilepsia , Processamento de Sinais Assistido por Computador , Humanos , Convulsões/diagnóstico , Epilepsia/diagnóstico , Redes Neurais de Computação , Eletroencefalografia
3.
Artigo em Inglês | MEDLINE | ID: mdl-35657842

RESUMO

State of health (SOH) estimation of lithium-ion batteries (LIBs) is of critical importance for battery management systems (BMSs) of electronic devices. An accurate SOH estimation is still a challenging problem limited by diverse usage conditions between training and testing LIBs. To tackle this problem, this article proposes a transfer learning-based method for personalized SOH estimation of a new battery. More specifically, a convolutional neural network (CNN) combined with an improved domain adaptation method is used to construct an SOH estimation model, where the CNN is used to automatically extract features from raw charging voltage trajectories, while the domain adaptation method named maximum mean discrepancy (MMD) is adopted to reduce the distribution difference between training and testing battery data. This article extends MMD from classification tasks to regression tasks, which can therefore be used for SOH estimation. Three different datasets with different charging policies, discharging policies, and ambient temperatures are used to validate the effectiveness and generalizability of the proposed method. The superiority of the proposed SOH estimation method is demonstrated through the comparison with direct model training using state-of-the-art machine learning methods and several other domain adaptation approaches. The results show that the proposed transfer learning-based method has wide generalizability as well as a positive precision improvement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...