Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 261: 121931, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38924952

RESUMO

The ecological risks posed by perfluoroalkyl acids (PFAAs) to the aquatic environment have recently been of great concern. However, little information was available on the impact of PFAAs on antibiotic resistance genes (ARGs) profiles. In this study, the receiving river of the largest fluoropolymer production facility in China was selected to investigate the effects of PFAAs on ARGs profiles. The highest PFAAs concentration for water samples near the industrial effluent discharge point was 310.9 µg/L, which was thousands times of higher than the average concentration collected at upstream sites. Perfluorooctanoic acid accounted for more than 67.2 % of ∑PFAAs concentration in water samples collected at the downstream sites, followed by perfluorohexanoic acid (3.6 %-15.9 %). 145 ARG subtypes including high-risk ARGs were detected by metagenomic technology. The results indicated that the discharge of PFAA-containing effluents had a significant impact on the abundance and diversity of ARGs in receiving waters, and PFAAs and water quality parameters (e.g., pH, NH3N, CODMn, TP) could largely affect ARG profiles. Specifically, short-chain PFAAs had similar impacts on ARG profiles compared to the restricted long-chain PFAAs. This study confirmed the potential effects of PFAAs on ARGs in aquatic environment and provided more insights into the ecological risk raised by PFAAs.

2.
Water Res ; 246: 120692, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37890262

RESUMO

The pH of chlorination is an important factor affecting the formation of disinfection byproducts (DBPs). In this study, we discovered that the genotoxicity induced by chlorination can be effectively reduced under alkaline conditions. As the pH of chlorination increased from 6.5 to 8.5, the genotoxicity of investigated waters reduced by ∼30-90 %. By assessing the genotoxicity of the mixture of measured DBPs, it was found that the contribution of measured DBPs to the overall genotoxicity was lower than 5 %, and the significant reduction of genotoxicity was largely associated with unknown DBPs. The result of Pearson's correlation analysis indicated that humified organics and soluble microbial byproducts were likely responsible for the genotoxicity, and their derived genotoxic compounds (i.e., unknown DBPs) tended to decompose during alkaline chlorination. However, the control of genotoxicity by alkaline chlorination was achieved at the expense of promoting trihalomethane (THM) formation. The highest genotoxicity reduction (93 %) was observed for chlorinated granular activated carbon-treated waters, but the formation of THMs was promoted to a level approaching that in untreated waters. The inconsistent trend of overall genotoxicity and THM concentration during alkaline chlorination suggested the inadequacy of THMs as metric for DBP exposure, and considerations should also be given to the toxicity of bulk water in addition to regulated DBPs.


Assuntos
Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Halogenação , Água Potável/química , Desinfetantes/análise , Trialometanos/química , Poluentes Químicos da Água/química , Desinfecção , Dano ao DNA
3.
Water Res ; 244: 120429, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37542764

RESUMO

Sandstorms, a natural meteorological event, occur repeatedly during the dry season and can accumulate large amounts of natural/anthropogenic pollutants during the deposition process, potentially introducing disinfection by-product (DBP) precursors into surface waters. In this study, the characteristics of sandstorm-derived dissolved organic matter (DOM) and its DBP formation potential were elucidated. Overall, sandstorm-derived DOM mainly consisted of low-molecular-weight, low-aromaticity, high-nitrogen organic matter, with a dissolved organic carbon (DOC) release yield of 14.4 mg-DOC/g. The halogenated DBP formation potential (calculated as total organic halogen) of sandstorm-derived DOM was comparable to that of surface water, while the normalized DBP-associated toxicity was 1.96 times higher. Similar to DOM introduced by other depositional pathways, sandstorm-derived DOM also had higher yields of highly cytotoxic DBPs (haloacetaldehydes [HALs], haloacetonitriles [HANs] and halonitromethanes [HNMs]). The average atmospheric deposition flux for DOM during the sandstorm event (50.4 ± 2.1 kg km-2 day-1) was 6.95 times higher than that of dry deposition, indicating a higher probability of contaminant input. Simultaneously, the estimation revealed that the sandstorm will increase the formation potential of toxicity forcing agents, such as HALs, HANs and HNMs, in surface water by 3.87%, 2.39% and 9.04%, respectively. Considering the high frequency of sandstorm events and the sorption of other organic pollutants by sand and dust, the impact of sandstorms on surface water quality should be of concern.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Desinfecção , Poluentes Químicos da Água/análise , Qualidade da Água , Halogenação , Desinfetantes/análise , Trialometanos
4.
J Hazard Mater ; 459: 132241, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37567136

RESUMO

Iodinated disinfection by-products (I-DBPs) exhibited potential health risk owing to the high toxicity. Our recent study demonstrated that I-DBPs from Laminaria japonica (Haidai), the commonly edible seaweed, upon simulated household cooking condition were several hundred times more than the concentration of drinking water. Here, the characterization of Haidai and its leachate tandem with the formation, identification and toxicity of I-DBPs from the cooking of Haidai were systemically investigated. The dominant organic matter in Haidai leachate were polysaccharides, while the highest iodine specie was iodide (∼90% of total iodine). Several unknown I-DBPs generated from the cooking of Haidai were tentatively proposed, of which 3,5-diiodo-4-hydroxybenzaldehyde was dominant specie. Following a simulated household cooking with real chloraminated tap water, the presence of Haidai sharply increased aggregate iodinated trihalomethanes, iodinated haloacetic acids, and total organic iodine concentrations to 97.4 ± 7.6 µg/L,16.4 ± 2.1 µg/L, and 0.53 ± 0.06 mg/L, respectively. Moreover, the acute toxicity of Haidai soup to Vibrio qinghaiensis sp.-Q67 was around 7.3 times higher than that of tap water in terms of EC50. These results demonstrated that the yield of I-DBPs from the cooking of Haidai and other seaweed should be carefully considered.


Assuntos
Desinfetantes , Água Potável , Iodo , Laminaria , Poluentes Químicos da Água , Purificação da Água , Desinfecção/métodos , Iodo/toxicidade , Halogenação , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Culinária , Trialometanos , Desinfetantes/análise
5.
Water Res ; 237: 119983, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37099872

RESUMO

The occurrence and transformation of microplastics (MPs) remaining in the water treatment plants has recently attracted considerable attention. However, few efforts have been made to investigate the behavior of dissolved organic matter (DOM) derived from MPs during oxidation processes. In this study, the characteristics of DOM leached from MPs during typical ultraviolet (UV)-based oxidation was focused on. The toxicity and disinfection byproduct (DBP) formation potentials of MP-derived DOM were further investigated. Overall, UV-based oxidation significantly enhanced the aging and fragmentation of highly hydroscopic MPs. The mass scales of leachates to MPs increased from 0.03% - 0.18% at initial stage to 0.09% - 0.71% after oxidation, which were significantly higher than those leached by natural light exposure. Combined fluorescence analysis with high resolution mass spectrometer scan confirmed that the dominant MP-derived DOM are chemical additives. PET-derived DOM and PA6-derived DOM showed inhibition of Vibrio fischeri activity with corresponding EC50 of 2.84 mg/L and 4.58 mg/L of DOC. Bioassay testing with Chlorella vulgaris and Microcystis aeruginosa showed that high concentrations of MP-derived DOM inhibited algal growth by disrupting the cell membrane permeability and integrity. MP-derived DOM had a similar chlorine consumption (1.63 ± 0.41 mg/DOC) as surface water (1.0 - 2.0 mg/DOC), and MP-derived DOM mainly served as precursors for the investigated DBPs. Contrary to the results of previous studies, the DBP yields from MP-derived DOM were relatively lower than those of aquatic DOM under simulated distribution system conditions. This suggests that MP-derived DOM itself rather than serving as DBP precursor might be potential toxic concern.


Assuntos
Chlorella vulgaris , Poluentes Químicos da Água , Purificação da Água , Desinfecção/métodos , Microplásticos , Plásticos , Halogênios , Halogenação , Poluentes Químicos da Água/análise
6.
J Environ Sci (China) ; 128: 81-92, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36801044

RESUMO

Identification and characterization of disinfection by-product (DBP) precursors could help optimize drinking water treatment processes and improve the quality of finished water. This study comprehensively investigated the characteristics of dissolved organic matter (DOM), the hydrophilicity and molecule weight (MW) of DBP precursor and DBP-associated toxicity along the typical full-scale treatment processes. The results showed that dissolved organic carbon and dissolved organic nitrogen content, the fluorescence intensity and the SUVA254 value in raw water significantly decreased after the whole treatment processes. Conventional treatment processes were in favor of the removal of high-MW and hydrophobic DOM, which are important precursors of trihalomethane and haloacetic acid. Compared with conventional treatment processes, Ozone integrated with biological activated carbon (O3-BAC) processes enhanced the removal efficiencies of DOM with different MW and hydrophobic fractions, leading to a further decrease in almost all DBP formation potential and DBP-associated toxicity. However, almost 50% of the detected DBP precursors in raw water has not been removed after the coagulation-sedimentation-filtration integrated with O3-BAC advanced treatment processes. These remaining precursors were found to be mainly hydrophilic and low-MW (< 1.0 kDa) organics. Moreover, they would largely contribute to the formation of haloacetaldehydes and haloacetonitriles, which dominated the calculated cytotoxicity. Since current drinking water treatment process could not effectively control the highly toxic DBPs, the removal of hydrophilic and low-MW organics in drinking water treatment plants should be focused on in the future.


Assuntos
Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Desinfecção , Desinfetantes/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos
7.
Environ Sci Technol ; 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36626160

RESUMO

Total organic halogen (TOX) is widely used as a surrogate bulk parameter to measure the overall exposure of halogenated disinfection byproducts (DBPs) in drinking water. In this study, we surprisingly found that the level of TOX in chlorinated waters had been significantly underestimated under common analytical conditions. After the addition of quenching agent sodium thiosulfate, total organic chlorine and total organic bromine exhibited a two-phase decomposition pattern with increasing contact time, and a significant decomposition was observed for different types of quenching agents, quenching doses, and pH conditions. More importantly, the decomposed TOX closely correlated with the acute toxicity of quenched water against luminous bacteria, implying that the DBPs responsible for TOX decomposition could be of important toxicological significance. Based on nontarget analysis by using high-resolution mass spectrometry, molecular formulas for the decomposed TOX were determined. After re-examining the mass balance of TOX in the context of unintentional decomposition, it was found that both the level and percentage of unknown TOX in chlorinated waters were considerably higher than historically thought. Overall, this study brings new insights into the knowledge of TOX formed during chlorination, providing important clues on the identification of toxicity driver in drinking water.

8.
J Environ Sci (China) ; 127: 824-832, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36522110

RESUMO

With a large amount of domestic sewage and industrial wastewater discharged into the water bodies, sulfur-containing organic matter in wastewater produced volatile organic sulfide, such as dimethyl trisulfide (DMTS) through microorganisms, caused the potential danger of drinking water safety and human health. At present, there is still a lack of technology on the removal of DMTS. In this study, the ultraviolet/peroxymonosulfate (UV/PMS) advanced oxidation processes was used to explore the degradation of DMTS. More than 90% of DMTS (30 µg/L) was removed under the conditions of the concentration ratio of DMTS to PMS was 3:40, the temperature (T) was 25 ± 2℃, and 10 min of irradiation by a 200 W mercury lamp (365 nm). The kinetics rate constant k of DMTS reacting with hydroxyl radical (HO·) was determined to be 0.2477 min-1. Mn2+, Cu2+ and NO3- promoted the degradation of DMTS, whereas humic acid and Cl- in high concentrations inhibited the degradation process. Gas chromatography-mass spectrometry was used to analyze the degradation products and the degradation intermediates were dimethyl disulfide and methanethiol. Density functional theory was used to predict the possible degradation mechanism according to the frontier orbital theory and the bond breaking mechanism of organic compounds. The results showed that the SS, CS and CH bonds in DMTS molecular structure were prone to fracture in the presence of free radicals, resulting in the formation of alkyl radicals and sulfur-containing radicals, which randomly combined to generate a variety of degradation products.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Humanos , Poluentes Químicos da Água/análise , Peróxidos/química , Sulfetos , Oxirredução , Enxofre
9.
Environ Sci Technol ; 56(20): 14487-14497, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36196960

RESUMO

Snow with large specific surface area and strong adsorption capacity can effectively adsorb atmospheric pollutants, which could/might lead to the increase of disinfection by-product (DBP) precursors in surface water. In this study, the contents and characteristics of dissolved organic matter (DOM) in meltwater were investigated, and DBP formation and the DBP-associated cytotoxicity index during chlorination of meltwater was first explored. Overall, meltwater exhibited high nitrogen contents. Meltwater-derived DOM was mainly composed of organics with low molecular weights, low aromaticity, and high unsaturated degrees. DBP formation potentials and cytotoxicity indexes in chlorinated meltwater were positively correlated with air quality index and were significantly impacted by snowfall stages. The trihalomethane and haloacetic acid yields from meltwater were relatively low, while yields of highly cytotoxic DBPs, especially halonitromethanes (6.3-10.8 µg-HNMs/mg-DOC), were significantly higher than those of surface water (1.7 µg-HNMs/mg-DOC). Notably, unsaturated nonaromatic organic nitrates in meltwater were important precursors of halonitromethanes. The actual monitoring results showed that snowfall significant increased the haloacetaldehydes and nitrogenous DBP formation levels of surface water. Considering increased DBP formation and DBP-associated toxicity, it was demonstrated that DOM derived from snowfall in atmosphere-polluted areas could deteriorate surface water quality and pose potential risks to drinking water.


Assuntos
Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Desinfecção , Halogenação , Nitratos , Nitrogênio , Neve , Trialometanos , Poluentes Químicos da Água/análise , Purificação da Água/métodos
10.
Water Res ; 225: 119177, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36206687

RESUMO

Iodinated disinfection by-products (I-DBPs) have attracted extensive interests because of their higher cytotoxicity and genotoxicity than their chlorinated and brominated analogues. Our recent studies have firstly demonstrated that cooking with seaweed salt could enhance the formation of I-DBPs with several tens of µg/L level. Here, I-DBP formation and mitigation from the reaction of disinfectant with Laminaria japonica (Haidai), an edible seaweed with highest iodine content, upon simulated household cooking process was systematically investigated. The total iodine content in Haidai ranged from 4.6 mg-I/g-Haidai to 10.0 mg-I/g-Haidai, and more than 90% of iodine is soluble iodide. During simulated cooking, the presence of disinfectant simultaneously decreased iodide by 15.0-32.8% to 2.7-5.8 mg/L and increased total organic iodine by 1.3-10.9 times to 0.5-1.8 mg/L in Haidai soup, proving I-DBP formation. The concentrations of iodinated trihalomethanes and haloacetic acids were at the levels of several hundreds of µg/L and several µg/L, respectively, which are 2-3 orders and 1-2 orders of magnitude more than those in drinking water. Effects of key factors including disinfectant specie, disinfectant dose, temperature and time on I-DBP formation were also ascertained, and temperature and disinfectant specie played a decisive role in the formation and speciation of I-DBPs. In order to avoid the potential health risk from the exposure of I-DBPs in Haidai soup, it is prerequisite to soak and wash dry Haidai sample over 30.0 min before cooking, which could effectively remove major soluble iodide. In general, this study provided the new insight into I-DBP formation from daily household cooking with Haidai and the corresponding enlightenment for inhabitants to eat Haidai in daily life.


Assuntos
Desinfetantes , Água Potável , Iodo , Laminaria , Poluentes Químicos da Água , Purificação da Água , Desinfecção , Água Potável/análise , Iodetos , Halogenação , Poluentes Químicos da Água/análise , Trialometanos/análise , Desinfetantes/análise , Culinária
11.
Chemosphere ; 296: 134014, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35182531

RESUMO

2,6-dichloro-1,4-benzoquinone (DCBQ), a typical representative of Halobenzoquinones, is an emerging aromatic disinfection by-product (DBP) with high toxicity and carcinogenicity, generated commonly through the chlorination in the drinking water disinfection process while there is still a lack of research on its removal. In this study, the effects of ultraviolet-based advanced oxidation processes (UV-AOPs) on the degradation of DCBQ were evaluated. The results showed that UV-AOPs are effective in degrading DCBQ. The removal of DCBQ by UV/H2O2/O3 was more significant than by UV/H2O2 or UV/O3, achieving a 96.7% removal rate at both the O3 and H2O2 doses of 1 mg/L. The results also indicated the alkaline and weakly acidic environments could facilitate the degradation of DCBQ, inorganic anions could inhibit DCBQ degradation and the degree of inhibition increased as the matrix concentration increased. The degradation of DCBQ was inhibited more by the CO32- than the other matrix components, such as Cl- and NO3-. It was shown by the density functional theory simulations and the ultrahigh-performance liquid chromatography (UPLC) - Orbitrap mass spectra that the electrons in DCBQ are mainly on the chlorine atom connected to the carboatomic ring and that OH• can attack the chlorine atom to cause de-chlorination. The DCBQ degradation pathway may involve the oxidation of DCBQ to 3-hydroxy-2,6-DCBQ (HO-DCBQ) and 3,5-dichloro-1,2,4-pyrogallol, the further degradation of intermediate products by OH• to dechlorinated forms of HO-DCBQ and DCBQ.


Assuntos
Água Potável , Poluentes Químicos da Água , Purificação da Água , Benzoquinonas , Cloro , Desinfecção/métodos , Halogênios , Peróxido de Hidrogênio , Oxirredução , Raios Ultravioleta , Poluentes Químicos da Água/análise , Purificação da Água/métodos
12.
Environ Sci Technol ; 55(18): 12326-12336, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34297564

RESUMO

The Yangtze River basin covers one-fifth of China's land area and serves as a water source for one-third of China's population. During long-distance water transport from upstream to downstream, various sources of dissolved organic matter (DOM) lead to considerable variation in DOM properties, significantly impacting water treatability and disinfection byproduct (DBP) formation after chlorination. Using size-exclusion chromatography and fluorescence spectroscopy, the spatial variation in DOM characteristics was comprehensively investigated on a basin scale. The formation of 36 DBPs and speciated total organic halogen in chlorinated samples was determined. Overall, the Yangtze River waters featured a high proportion of terrestrially derived humic substances that served as important precursors for trihalomethanes and haloacetic acids, which was responsible for the increase in total DBP formation along the Yangtze River. The downstream waters were characterized by high levels of microbially derived protein-like biopolymers, which significantly contributed to the formation of haloacetaldehydes and haloacetonitriles that dominated DBP-associated mammalian cell cytotoxicity. Moreover, the precursors of haloacetaldehydes and haloacetonitriles in downstream waters were highly hydrophilic, posing a challenge for water treatment. This study presents an extensive basin-scale study, providing insights into DOM variations along the Yangtze River, illustrating the impact of DOM properties on drinking water from a DBP perspective.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Desinfecção , Halogenação , Trialometanos/análise , Poluentes Químicos da Água/análise
13.
Sci Total Environ ; 795: 148739, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34328925

RESUMO

Seasonal cyanobacterial blooms in eutrophic water releases algal organic matter (AOM), which contains large amount of dissolved organic nitrogen (DON) and is difficult to be removed effectively by conventional treatment processes (e.g., coagulation and sand filtration) because of its high hydrophilicity. Moreover, N-nitrosodimethylamine (NDMA) can be generated by the reaction of AOM with disinfectants in the subsequent disinfection process. In this study, the formation of NDMA from different AOM components was explored and the control of algal-derived NDMA precursors by UV/H2O2/O3 was evaluated. The results showed that the hydrophilic and polar components of AOM with the low molecular weight had higher NDMA yields. UV-based advanced oxidation process (AOPs) is effective in degrading NDMA precursors, while the removal rate can be affected greatly by UV doses. The removal rate of NDMA precursors by UV/H2O2/O3 is higher than by UV/H2O2 or UV/O3 which can reach 95% at the UV dose of 400 mJ/cm2. An alkaline environment reduces the oxidation efficiency of UV/H2O2/O3 technology, while an acidic environment is conducive to its function. Inorganic anions such as HCO3-, SO42-, Cl- and NO3- are potential to compete with target algal-derived NDMA precursors for the oxidants reaction and inhibit the degradation/removal of these precursors. The degradation of algal-derived NDMA precursors by UV/H2O2/O3 is mainly accomplished by the oxidation of DON with secondary amide groups, and the main degradation mechanism by UV/H2O2/O3 was through the initial decomposition of macromolecular organic compounds such as biopolymers and humic substances and the further degradation of resulting small molecular components.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Dimetilnitrosamina , Peróxido de Hidrogênio , Tecnologia , Raios Ultravioleta , Poluentes Químicos da Água/análise
14.
J Food Biochem ; 44(9): e13353, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32614083

RESUMO

To explore the immunoregulatory function of peony seed proteolysis product in mice, the protein from peony seed meal was extracted and hydrolyzed with bromelain. The peony seed proteolysis product was fed to mice at three different doses of 0.25, 0.5, and 1.0 g/kg for 21 days. The immunoregulation abilities of peony seed proteolysis product after each of these doses were evaluated in mice. Our results showed that all immune indices were higher in mice that had received a lavage with peony seed proteolysis product than in control mice. The immune indices of immune organs, delayed-type hypersensitivity reaction (DTH), phagocytosis of peritoneal macrophages, serum hemolysin levels, lymphocyte proliferation (SI value), and levels of IFN-γ and IL-4 in the middle dose and high dose groups were significantly higher (p < .05) or extremely significant (p < .01) in comparison with the control group. These results indicate that the peony seed proteolysis product enhances immunological functions in mice. PRACTICAL APPLICATIONS: Peony seed is rich in proteins and can be extracted and hydrolyzed using bromelain. The peony seed proteolysis product can enhance the nonspecific, humoral, and cellular immune responses. Thus, peony seed could be of potential value to obtain peony seed protein, which can be further developed and utilized in the manufacture of functional health products.


Assuntos
Paeonia , Animais , Camundongos , Proteólise , Sementes
15.
Water Environ Res ; 92(1): 94-105, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31332872

RESUMO

To overcome the problems of high excess sludge yield and poor nitrogen removal efficiency in traditional biological treatment processes, a multi-stage A/O biofilm reactor was developed by combining the multi-stage A/O process with novel floating spherical carriers, resulting in repeated coupling of anoxic and aerobic environments. Results showed that the system achieved COD, NH 4 + - N , and TN removal efficiencies of 93.8%, 84.5%, and 75.7%, respectively, with average effluent concentrations lower than: 29.8 COD mg/L, 4.3 NH 4 + - N  mg/L, and 13.2 TN mg/L. The observed sludge yield was 0.139 g MLSS/g COD, which was lower than that of the conventional activated sludge process. Microbial analysis showed that the community structure and cell morphology of microorganisms changed greatly with alternating aerobic-anoxic condition; high-throughput sequencing results proved that functional microorganisms can be enriched on the surface of the carries and therefore improved the nitrogen removal efficiency and meanwhile minimize the sludge yield within the system. PRACTITIONER POINTS: The research innovatively developed a novel floating spherical carrier and coupled it with multi-stage A/O process. The complex redox environments inside the floating spherical carriers improves the nitrogen removal efficiency and the sludge reduction effect. Nitrospirae, Hydrogenophaga promoted the nitrogen removal, Firmicutes, Bacteroidetes and Dechloromonas promoted the in-situ sludge reduction of the system.


Assuntos
Nitrogênio , Esgotos , Biofilmes , Reatores Biológicos , Desnitrificação , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...