Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 30(10): 3082-8, 2009 Oct 15.
Artigo em Chinês | MEDLINE | ID: mdl-19968135

RESUMO

The short-arm air-cathode microbial fuel cell (ACMFC) was constructed using a cramp to fix the proton exchange membrane (PEM) and carbon paper with 0.5 mg/cm2 onto the short-arm side of the anode chamber. Exoelectrogens on the surface of graphite rod were enriched by a sludge microbial fuel cell from the anaerobic digestion sludge. And the cyclic voltammetry result showed these microbes had electrochemical activities. Using the graphite rod covered by exoelectrogens as the anode and sodium acetate as the substrate, the short-arm ACMFC showed a maximal power density (Pm) of 738 mW/m2, internal resistance (Ri) of 280 omega and open circuit voltage (OCV) of 741 mV. Continuous sparging the anode chamber with nitrogen or removal of the proton exchange membrane enhance the Pm of the cell to 745 mW/m2 and 759 mW/m2 respectively. When both of the two measures were used together, the Pm reached up to 922 mW/m2. Under these three conditions the Ri of the cell was kept around 280 omega. When the substrate concentration was 12.62-100.96 mg/L and external resistance was 510 omega, the maximal voltage of the cell and the substrate concentration showed an obvious linear relation (R2 = 0.99). But when the concentration was above 100.96 mg/L, the maximal voltage stably kept around 302mV(the external resistance was 510 omega). However, the Coulombic efficiency of the short-arm ACMFC gradually increased with the increase of the substrate concentration, from 31.83% to 45.03%.


Assuntos
Fontes de Energia Bioelétrica , Conservação de Recursos Energéticos , Eletricidade , Esgotos/microbiologia , Fontes de Energia Bioelétrica/microbiologia , Eletrodos , Transferência de Energia/fisiologia , Desenho de Equipamento , Prótons
2.
Sheng Wu Gong Cheng Xue Bao ; 22(1): 131-7, 2006 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-16572853

RESUMO

Dissimilatory Metal Reduction Bacteria play an important role in the anaerobic environment. This kind of bacteria gains energy by coupling the oxidation of organic acid or sugars to the reduction of metal oxides. The graphite electrode rode can also be used as the final electron acceptor due to its similarity to solid metal oxides. Based on this biological mechanism, Dissimilatory Metal Reduction Bacteria Rhodoferaxferrireducens was used to construct a suit of microbial fuel cells with sugars as fuel, and the process and mechanism of electricity generation was studied. Rhodoferax ferrireducens was inoculated into the anode chamber in which a graphite electrode served as the final electron acceptor and glucose as the sole electron donor. It was showed that current density was up to 158mA/m2 with the resistance of 510omega at the normal temperature (platform voltage was around 0.46V, the effectual electrode surface was 57cm2). Following 20days' growth a large amount of bacteria cells attached to the electrode surface had been observed through the SEM images. The plandtonic cell protein concentration was 140mg/L and the attached biomass of electrode surface was 1180mg/m2 determined by the Bradford method, which indicated quite a few bacteria attached to the electrode. By analyzing the voltage value measured by the data acquisition system, it was proved that microbial electricity generation attributed mainly to the electrochemically and biologically active cells attached to the electrode, while the planktonic cells had no ability to catalyze electricity generation and almost had not electrochemically and biologically active. Furthermore, this kind of microbial fuel cells exhibited a good electrochemical cycle property and proved to be efficient in biomass utilization and energy restore since other sugars like fructose, sucrose, even xylose, could be oxidized and finally decomposed. Vast waste biomass in the form of carbohydrates is discarded in the environment. Not only is contamination of the environment caused by the discarded biomass, but also abundant energy stored in the biomass is drained away in vain. The sugar-based microbial fuel cells constructed by Rhodoferax ferrireducens could effectively transform the energy stored in sugars into electricity. Meanwhile, the microbial fuel cells presented in this paper, which could work cleanly at normal temperature with a good cycle property, showed a promising future application in this field.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Comamonadaceae/metabolismo , Eletricidade , Glucose/metabolismo , Transporte de Elétrons , Falha de Equipamento , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...