Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(8): 14541-14554, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38859396

RESUMO

This study proposes an ultraviolet-visible composite optical target simulation technique based on a liquid crystal display (LCD) spatial light modulation device to solve the problem of not being able to satisfy the demand for optical target simulation for both ultraviolet and visible light operating spectral ranges in a single system when composite simulation of multi-source spatial targets is performed. We establish a composite light source model of an ultraviolet light emitting diode (LED) and a xenon lamp to enhance the energy simulation of the ultraviolet portion, and the light is mixed and homogenized by an integrating sphere. We analyze the light transmission principle of LCD display devices and derive the equation for the relationship between its working band and transmittance. We design a transmission-type projection system with a wide spectral range and simulate the transmittance of the whole system, and demonstrate the optical target simulator can realize the simulation requirements of a wide working spectral range, high interstellar angular distance accuracy, and high magnitude accuracy.

2.
Opt Express ; 32(12): 21820-21836, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38859527

RESUMO

Current space target simulation systems suffer from limitations, such as a single simulated spectral band, inability to allocate spectral ratios between bands, and poor imaging quality of multi-spectral simulated images. We propose a multi-source information fusion spatial target simulation method system that features a "series-parallel" hybrid connection. We optimize the design of a multi-spectral common aperture optical system and experimentally verify the proposed method. The experimental results show that the proposed system can simulate a wide range of spectral bands ranging from ultraviolet to long-wave infrared. Furthermore, it achieves precise control over the ratio of simulated radiant energy among spectral bands, with a spectral simulation error of less than 4.8%. Notably, it effectively images stars against the cosmic background and spacecraft across different spectral bands. This system serves as a theoretical cornerstone and provides crucial technological support for performance testing and rapid iterative development of multi-source information fusion space exploration systems.

3.
iScience ; 27(2): 108918, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38318378

RESUMO

The existing infrared target simulation system with a total internal reflection (TIR) prism has the problem of low imaging contrast ratio, which will seriously affect the quality of the simulated image. This study proposes a design method of optimized TIR prism (OTIR) based on Snell's law in medium-wave infrared (MWIR) to solve the problem. The radiation theory is used to construct the constraint model of the OTIR prism in the MWIR target simulation system. Further, this study investigates the influence of different states of the digital micromirror device on the beam direction and derives the design equation of the OTIR prism composed of three prisms based on Snell's law. Finally, the designed OTIR prism is simulated and experimentally verified. The simulated results show that the OTIR prism of the compact MWIR target simulation system can enhance the contrast ratio. The experimental results show that the output contrast ratio of the simulation system at 700 K is about 298:1. In the specified temperature range, the contrast ratio of the infrared target simulation system increases with the increase of the light source temperature. Thus, the OTIR prism has the function of improving the contrast ratio of MWIR target simulation system.

4.
Opt Express ; 31(19): 30267-30284, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37710572

RESUMO

This study proposes an optical illumination system design based on vector diffraction characteristics and the Scheimpflug principle to determine an optimal relationship between illumination uniformity, energy utilization, and system size in an infrared scene projector. We investigate the influence of digital micromirror device (DMD) diffraction efficiency at different incidence angles on energy utilization rate and establish a two-dimensional diffraction grating model to determine the optimal incidence angle of the DMD beam. We demonstrate that the optical illumination system of a long-wave infrared (LWIR) scene projector based on diffraction characteristics can simulate an infrared scene with a compact structure, high energy efficiency, and high uniformity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...