Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 252(Pt 4): 119062, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38719066

RESUMO

This experiment prepared magnetic composite siderophores (DMPs) with strong magnetism, excellent adsorption capacity, and high specific surface area. Exploring the synergistic effect of magnetic nanoparticles and siderophores on Microcystis aeruginosa growth under iron-deficient condition, by utilizing the characteristics of the three-layer core-shell structure of DMPs. This study elucidated the potential mechanism by which DMPs promote the cyanobacterial growth through physiological indicators and transcriptome analysis. On the experiment's final day, cell density in DMPs treatment group at 2, 4, and 8 mg/L were 1.10, 1.14 and 1.16 times higher than those in the control group (Ct), respectively. Similarly, chlorophyll and photosynthetic efficiency results showed improved algae growth with increasing DMPs dosage. The microcystin content in DMPs experimental groups at low, medium, and high concentration were 0.91, 0.86, and 0.83 times that of Ct, indicating alleviation of iron deficiency stress. Additionally, based on extracellular polymers, intracellular and extracellular siderophores, and visualization techniques, DMPs nanoparticles captured free iron sources in the environment, promoting algae growth by entering algal cells and facilitating the uptake and utilization of free iron ions from the solution. During the experiment, the iron uptake and transport genes (feoA and feoB) were significantly upregulated, whereas the algal siderophore synthesis gene (pchF) and the TonB-dependent transport system gene (TonB_C) were significantly downregulated, suggesting heightened activity in intracellular iron uptake and transport. This indicates an abundance of intracellular iron, eliminating the need for secrete siderophores to overcome iron deficiency. Microcystis aeruginosa increased iron bioavailability by using iron transported through DMPs in the environment while internalizing these DMPs. This study explored the mechanism of this synergistic effect to boost algal growth, and provided new ideas for elucidating the mechanism of cyanobacterial bloom outbreaks as well as the innovative application of biotechnology.


Assuntos
Desferroxamina , Microcystis , Microcystis/crescimento & desenvolvimento , Microcystis/efeitos dos fármacos , Desferroxamina/farmacologia , Sideróforos , Nanopartículas de Magnetita/química , Ferro/metabolismo
2.
Chemosphere ; 343: 140220, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37739130

RESUMO

In the context of rampant growth of invasive plants, finding suitable ways for resource utilization has become the optimal choice for invasive plant management. In the field of energy storage, sodium-ion batteries have been limited by the lack of appropriate anode materials, and hard carbon stands out as the most promising candidate. Therefore, this study focuses on the preparation of biomass-derived carbons from three invasive plant species, namely Spartina alterniflora Loisel., Solidago canadensis L., and Erigeron canadensis L., through high-temperature carbonization. The resulting biomass carbons are then subjected to cleaning and activation processes to prepare sodium-ion anode materials. The internal structure of the materials was characterized using SEM, TEM, XRD, XPS, Raman spectroscopy, and BET. The materials exhibited a significant amount of pore structures, with interlayer spacing around 0.37 nm, which is larger than the original graphite interlayer spacing. The plant anode materials were assembled into full batteries for cyclic charge/discharge tests. The results show that all three anode materials have good multiplicative performance and excellent cyclable charge/discharge. After 100 cycles at a current of 50 mA in the voltage range of 0-3.0 V, the reversible capacities of the three materials reached 245.3, 207.19, and 227.12 mAh/g, respectively. Among them, the material derived from Spartina alterniflora maintained a capacity of 141.63 mAh/g even after 1000 cycles at a current of 200 mA, demonstrating the best capacity performance.

3.
Chemosphere ; 327: 138506, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36966924

RESUMO

Deferoxamine (DFB) is a trihydroxamic acid siderophore that chelates with iron (Fe) to form iron-siderophore complexes. The existence of siderophores in nature changes the form of iron and affects the absorption and utilization of iron by organisms. However, the relationship between siderophores and the growth of Cyanobacteria is largely unknown. In this study, the cellular and transcriptomic responses to the addition of DFB were investigated. A high concentration of DFB (12 mg/L) significantly inhibited the growth of Cyanobacteria cells, reduced photosynthetic activity, and induced the production of peroxidase, with the highest inhibition rate of algal growth of 74.82%. These indexes were also affected for the low (3 mg/L) and medium concentration (6 mg/L) groups, but this difference is closely related to the growth stage of Cyanobacteria cells. This may be due to competition between the cell-associated iron-binding part/system and the extracellular Fe (Ⅲ)-DFB ligand. Transcriptome results showed that most of the genes involved in iron uptake and transport were down-regulated, and only the fur gene encoding the iron uptake regulator protein was significantly up-regulated. Most genes related to photosynthesis, glycolysis, and fatty acid metabolism were also down-regulated, while the obvious up-regulation of a few genes may be a complex regulation in response to the down-regulation of most genes. These findings will provide important insights into the effects of siderophores on iron bioavailability in algae.


Assuntos
Cianobactérias , Microcystis , Ferro/metabolismo , Sideróforos/farmacologia , Sideróforos/metabolismo , Microcystis/metabolismo , Desferroxamina/farmacologia , Desferroxamina/metabolismo , Transcriptoma , Fotossíntese , Cianobactérias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...