Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 7(2): e06233, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33659750

RESUMO

Global diminishing water resources, especially due to climate change have serious impacts on evaporation (E) from the soil surface, transpiration (T) from plants (crops) and grain yield, which relates to water use efficiency of different crops. A study was conducted at Kenilworth over two wheat cropping seasons (2007 and 2008) with the objectives of: (i) evaluating the effect of soils and seasons on T, E and yield, and (ii) relating these parameters to transpiration efficiency coefficient. The treatments included two soil types and two soil surface treatments (bare and mulched), which were all replicated four times. Weekly irrigation was done using a surface drip system while maintaining the water table at a constant depth. Soil water content was monitored using a neutron probe. Neither soils nor seasons were found to significantly influence the partitioning of evapotranspiration (ET), and T varied from 74 to 76% of ET while E varied between 24 and 26%. Surface treatments caused significant differences in grain yield in both seasons. Reducing evaporative loss improves the water productivity of wheat, which has an important implication in dryland farming.

2.
PLoS One ; 9(8): e104672, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25111802

RESUMO

Despite our growing knowledge on plants' functional responses to grazing, there is no consensus if an optimum level of functional aggregation exists for detecting grazing effects in drylands. With a comparative approach we searched for plant functional types (PFTs) with a consistent response to grazing across two areas differing in climatic aridity, situated in South Africa's grassland and savanna biomes. We aggregated herbaceous species into PFTs, using hierarchical combinations of traits (from single- to three-trait PFTs). Traits relate to life history, growth form and leaf width. We first confirmed that soil and grazing gradients were largely independent from each other, and then searched in each biome for PFTs with a sensitive response to grazing, avoiding confounding with soil conditions. We found no response consistency, but biome-specific optimum aggregation levels. Three-trait PFTs (e.g. broad-leaved perennial grasses) and two-trait PFTs (e.g. perennial grasses) performed best as indicators of grazing effects in the semi-arid grassland and in the arid savanna biome, respectively. Some PFTs increased with grazing pressure in the grassland, but decreased in the savanna. We applied biome-specific grazing indicators to evaluate if differences in grazing management related to land tenure (communal versus freehold) had effects on vegetation. Tenure effects were small, which we mainly attributed to large variability in grazing pressure across farms. We conclude that the striking lack of generalizable PFT responses to grazing is due to a convergence of aridity and grazing effects, and unlikely to be overcome by more refined classification approaches. Hence, PFTs with an opposite response to grazing in the two biomes rather have a unimodal response along a gradient of additive forces of aridity and grazing. The study advocates for hierarchical trait combinations to identify localized indicator sets for grazing effects. Its methodological approach may also be useful for identifying ecological indicators in other ecosystems.


Assuntos
Biomassa , Secas , Ingestão de Alimentos , Pradaria , Plantas/classificação , Animais , África do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...