Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Virol ; 86(24): 13745-55, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23055562

RESUMO

Atherosclerosis is a major pathogenic factor in cardiovascular diseases, which are the leading cause of mortality in developed countries. While risk factors for atherosclerosis tend to be systemic, the distribution of atherosclerotic plaques within the vasculature is preferentially located at branch points and curves where blood flow is disturbed and shear stress is low. It is now widely accepted that hemodynamic factors can modulate endothelial gene expression and function and influence the pathophysiological changes associated with atherosclerosis. Human cytomegalovirus (HCMV), a ubiquitous pathogen, has long been proposed as a risk factor for atherosclerosis. To date, the role of HCMV in atherogenesis has been explored only in static conditions, and it is not known how HCMV infection is influenced by the physiological context of flow. In this study, we utilized a parallel-plate flow system to simulate the effects of shear stresses in different regions of the vasculature in vitro. We found that endothelial cells cultured under low shear stress, which simulates the flow condition of atheroprone regions in vivo, are more permissive to HCMV infection than cells experiencing high shear stress or static conditions. Cells exposed to low shear stress show increased entry of HCMV compared to cells exposed to high shear stress or static conditions. Viral structural gene expression, viral titers, and viral spread are also enhanced in endothelial cells exposed to low shear stress. These results suggest that hemodynamic factors modulate HCMV infection of endothelial cells, thus providing new insights into the induction/acceleration of atherosclerosis by HCMV.


Assuntos
Artérias/virologia , Citomegalovirus/fisiologia , Endotélio Vascular/virologia , Fusão de Membrana , Sequência de Bases , Western Blotting , Células Cultivadas , Citomegalovirus/genética , Citomegalovirus/patogenicidade , Primers do DNA , DNA Viral/biossíntese , Imunofluorescência , Regulação Viral da Expressão Gênica , Genes Virais , Humanos , Microscopia Eletrônica de Transmissão , Reação em Cadeia da Polimerase
2.
Mol Cell Biol ; 29(15): 4295-307, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19470760

RESUMO

The endoplasmic reticulum (ER) is the major cellular compartment where folding and maturation of secretory and membrane proteins take place. When protein folding needs exceed the capacity of the ER, the unfolded protein response (UPR) pathway modulates gene expression and downregulates protein translation to restore homeostasis. Here, we report that the UPR downregulates the synthesis of rRNA by inactivation of the RNA polymerase I basal transcription factor RRN3/TIF-IA. Inhibition of rRNA synthesis does not appear to involve the well-characterized mTOR (mammalian target of rapamycin) pathway; instead, PERK-dependent phosphorylation of eIF2alpha plays a critical role in the inactivation of RRN3/TIF-IA. Downregulation of rRNA transcription occurs simultaneously or slightly prior to eIF2alpha phosphorylation-induced translation repression. Since rRNA is the most abundant RNA species, constituting approximately 90% of total cellular RNA, its downregulation exerts a significant impact on cell physiology. Our study demonstrates the first link between regulation of translation and rRNA synthesis with phosphorylation of eIF2alpha, suggesting that this pathway may be broadly utilized by stresses that activate eIF2alpha kinases in order to coordinately regulate translation and ribosome biogenesis during cellular stress.


Assuntos
Retículo Endoplasmático/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Regulação da Expressão Gênica , RNA Ribossômico/genética , Animais , Western Blotting , Imunoprecipitação da Cromatina , Eletroforese em Gel de Poliacrilamida , Fator de Iniciação 2 em Eucariotos/química , Fator de Iniciação 2 em Eucariotos/genética , Células HeLa , Humanos , Camundongos , Células NIH 3T3 , Fosforilação , Proteínas Pol1 do Complexo de Iniciação de Transcrição , Biossíntese de Proteínas , Dobramento de Proteína , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
3.
Mol Biol Cell ; 17(7): 3095-107, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16672378

RESUMO

The unfolded protein response (UPR) regulates the protein-folding capacity of the endoplasmic reticulum (ER) according to cellular demand. In mammalian cells, three ER transmembrane components, IRE1, PERK, and ATF6, initiate distinct UPR signaling branches. We show that these UPR components display distinct sensitivities toward different forms of ER stress. ER stress induced by ER Ca2+ release in particular revealed fundamental differences in the properties of UPR signaling branches. Compared with the rapid response of both IRE1 and PERK to ER stress induced by thapsigargin, an ER Ca2+ ATPase inhibitor, the response of ATF6 was markedly delayed. These studies are the first side-by-side comparisons of UPR signaling branch activation and reveal intrinsic features of UPR stress sensor activation in response to alternate forms of ER stress. As such, they provide initial groundwork toward understanding how ER stress sensors can confer different responses and how optimal UPR responses are achieved in physiological settings.


Assuntos
Fator 6 Ativador da Transcrição/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Dobramento de Proteína , Proteínas Serina-Treonina Quinases/metabolismo , eIF-2 Quinase/metabolismo , Animais , ATPases Transportadoras de Cálcio/antagonistas & inibidores , Cricetinae , Ditiotreitol/farmacologia , Retículo Endoplasmático/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Fator de Iniciação 2 em Eucariotos/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Camundongos , Chaperonas Moleculares/metabolismo , Células NIH 3T3 , Transdução de Sinais , Tapsigargina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...