Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods ; 225: 28-37, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38485032

RESUMO

The manuscript presents the synthesis of a new di-chromene Schiff base (COM-CH) by combining 7-(diethylamino)-2-oxo-2H-chromene-3-carbohydrazide and 4-oxo-4H-chromene-3-carbaldehyde, and its characterization using various analytical techniques. The probe COM-CH functional group contains a hard donor atom that selectively complexes with Th4+ ions. This report investigated COM-CH's sensing ability towards Th4+ chromogenic and fluorogenic methods in ACN: H2O (8:2, v/v) with Th4+ ions. The COM-CH-Th4+ complex was excited at 430 nm, resulting in a bright emission band at 475 nm with a 45 nm Stokes shift. The COM-CH probe demonstrated the highest performance at pH 4.0 to 8.0, with a sensitivity of 18.7 nM. The complex formation of COM-CH with Th4+ was investigated using NMR, FTIR spectrometry, and density functional theory calculations. The COM-CH and Th4+ are bound with 2:1 stoichiometry and an association constant of 1.92 × 108 M-2. The probe's performance enabled the analysis of monazite sand and water samples for Th4+ content. The probe successfully detected Th4+ content in Caenorhabditis elegans, marking the first Th4+ detection in animal models.


Assuntos
Benzopiranos , Caenorhabditis elegans , Corantes Fluorescentes , Bases de Schiff , Animais , Bases de Schiff/química , Corantes Fluorescentes/química , Benzopiranos/química , Espectrometria de Fluorescência/métodos , Concentração de Íons de Hidrogênio , Imagem Óptica/métodos
2.
BJU Int ; 124(4): 567-577, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31219658

RESUMO

OBJECTIVE: To investigate the applications of artificial intelligence (AI) in diagnosis, treatment and outcome predictionin urologic diseases and evaluate its advantages over traditional models and methods. MATERIALS AND METHODS: A literature search was performed after PROSPERO registration (CRD42018103701) and in compliance with Preferred Reported Items for Systematic Reviews and Meta-Analyses (PRISMA) methods. Articles between 1994 and 2018 using the search terms "urology", "artificial intelligence", "machine learning" were included and categorized by the application of AI in urology. Review articles, editorial comments, articles with no full-text access, and nonurologic studies were excluded. RESULTS: Initial search yielded 231 articles, but after excluding duplicates and following full-text review and examination of article references, only 111 articles were included in the final analysis. AI applications in urology include: utilizing radiomic imaging or ultrasonic echo data to improve or automate cancer detection or outcome prediction, utilizing digitized tissue specimen images to automate detection of cancer on pathology slides, and combining patient clinical data, biomarkers, or gene expression to assist disease diagnosis or outcome prediction. Some studies employed AI to plan brachytherapy and radiation treatments while others used video based or robotic automated performance metrics to objectively evaluate surgical skill. Compared to conventional statistical analysis, 71.8% of studies concluded that AI is superior in diagnosis and outcome prediction. CONCLUSION: AI has been widely adopted in urology. Compared to conventional statistics AI approaches are more accurate in prediction and more explorative for analyzing large data cohorts. With an increasing library of patient data accessible to clinicians, AI may help facilitate evidence-based and individualized patient care.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...