Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mycobacteriol ; 9(4): 405-410, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33323656

RESUMO

Background: Mycobacterium tuberculosis is able to survive and persist as an intracellular pathogen by modulating its own metabolism and host immunity. The molecules and mechanisms utilized to accomplish this modulation are not fully understood. The present study elucidates the effects of M. tuberculosis secretory antigens on T-cell-receptor (TCR)/CD28-triggered signaling in Jurkat T-cells. Method: In the present study, intracellular calcium mobilization was investigated in CD3-activated cells in response to M. tuberculosis antigens, Ag85A, early secretory antigenic target-6 (ESAT-6), and H37Rv. The activation of mitogen-activated protein kinases, extracellular signal-regulated kinases 1 and 2 (ERK1/2), and p-38 was also analyzed in CD3- and CD28-activated cells by western blotting. Results: Our results showed CD3-triggered modulations in free intracellular calcium levels in Jurkat T-cells in response to M. tuberculosis antigens. In addition, we also noted M. tuberculosis antigens induced downregulation in phosphorylation of ERK1/2 and p-38. Overall, our results proposed that M. tuberculosis secretory antigens, particularly ESAT-6, impede TCR/CD28-induced signaling events which could be responsible for T-cell unresponsiveness, implicated in the progression of disease. Conclusion: The present study demonstrated M. tuberculosis secretory antigens induced alteration of T-cell signaling pathways in unsensitized Jurkat T-cell line which might be implied in T-cell dysfunctioning during the progression of the disease.


Assuntos
Mycobacterium tuberculosis , Antígenos CD28 , Humanos , Células Jurkat , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mycobacterium tuberculosis/metabolismo , Transdução de Sinais
2.
Immunol Lett ; 207: 6-16, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30629982

RESUMO

The present study evaluates role of Notch1 signaling in the regulation of T cell immunity in leprosy. Peripheral blood mononuclear cells from leprosy patients and healthy controls were activated with Mycobacterium leprae antigens along with activation of Notch1 signaling pathway and then lymphoproliferation was analyzed by lymphocytes transformation test and the expression of Notch1 and its ligands DLL1, Jagged1 and Jagged 2, T cell activation marker and Th1-Th2 cytokines on Th cells in PBMCs of study subjects were analyzed by flow cytometry. Further, these parameters were also analyzed after inhibition of Notch1 signaling pathway. Higher percentage of Notch1expressing Th cells were noted in TT/BT cases and higher percentage of DLL1 expressing Th cells in TT/BT and BL/LL cases. M. leprae antigens were found to induce the expression of Jagged1 on Th cells. Interestingly activation of Notch1 signaling pathway induced lymphoproliferation in BL/LL cases in response of PGL-1. Activation of Notch1 signaling was also found to induce the expression of T cell activation markers CD25, CD69 and Th1 cytokine IFN-γ in response to M. leprae antigens. Immunomodulation through Notch1 signaling seen in our study could be helpful in augmenting Th1 response in leprosy.


Assuntos
Antígenos de Bactérias/imunologia , Glicolipídeos/imunologia , Hanseníase/imunologia , Mycobacterium leprae/imunologia , Receptor Notch1/metabolismo , Células Th1/imunologia , Células Th2/imunologia , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Progressão da Doença , Citometria de Fluxo , Humanos , Imunomodulação , Interferon gama/metabolismo , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Lectinas Tipo C/metabolismo , Ativação Linfocitária , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Transdução de Sinais , Equilíbrio Th1-Th2
3.
BMC Infect Dis ; 19(1): 52, 2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30642265

RESUMO

BACKGROUND: Leprosy is an ideal human disease to study T cell regulation as patients show correlation between cytokine skewed Th1-Th2 responses and clinical forms of the disease. The Role of transcription factors on the modulation of Th1 and Th2 responses by M. leprae antigens has not been adequately studied. In the present study, we studied the effect of M. leprae antigens on transcription factors STAT-4, STAT-6 and CREB and their correlation with Th1/Th2 cell mediated immune responses in leprosy. METHODS: Leprosy patients of both categories of tuberculoid leprosy (BT/TT) and lepromatous leprosy (BL/LL) were selected from the OPD of NJ1L & OMD, (ICMR), Agra and healthy individuals (H) were chosen from the staff and students working in the institute. Peripheral blood mononuclear cells (PBMCs) of the study subjects were stimulated with M. leprae antigens (WCL, MLSA, and PGL-1). Sandwich ELISA was done in the culture supernatants of healthy and leprosy patients to detect IL-4, IL-10 and IFN-γ. Further, expression of IFN-γ and IL-4 and activation of STAT4, STAT6 and CREB transcription factors in CD4+ T cell with or without stimulation of M. leprae antigens was investigated by flow cytometry. RESULTS: Lepromatous leprosy patients showed significantly lower IFN-γ and higher IL-4 levels in culture supernatant and significantly low expression of IFN-γ and higher expression of IL-4 by CD4+ T cells than healthy individuals with or without antigenic stimulation. Antigenic stimulation significantly increased IL-10 in BL/LL patients but not in BT/TT patients or healthy individuals. PGL-1 stimulation led to significantly higher activation of STAT-6 in BT/TT and BL/LL patients in comparison to healthy individuals. All the three antigens led to activation of CREB in healthy and BT/TT patients but not in BL/LL patients. CONCLUSION: Our findings show that M. leprae antigens differentially modulate activation of T cell transcription factors STAT-4/STAT-6 and CREB. These transcription factors are well known to regulate Th1 and Th2 mediated immune response which in turn could play vital role in the clinical manifestations of leprosy. These observations may help to determine how these T cell transcription factors affect the development of immune dysfunction and whether these new pathways have a role in immunomodulation in intracellular diseases like leprosy and TB.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Hanseníase/imunologia , Mycobacterium leprae/imunologia , Fator de Transcrição STAT4/metabolismo , Fator de Transcrição STAT6/metabolismo , Adulto , Antígenos de Bactérias/farmacologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Estudos de Casos e Controles , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/imunologia , Citocinas/metabolismo , Humanos , Hanseníase/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/microbiologia , Pessoa de Meia-Idade , Mycobacterium leprae/patogenicidade , Fator de Transcrição STAT4/imunologia , Fator de Transcrição STAT6/imunologia , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Células Th1/metabolismo , Células Th2/efeitos dos fármacos , Células Th2/imunologia , Células Th2/metabolismo
4.
BMC Immunol ; 16: 67, 2015 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-26552486

RESUMO

BACKGROUND: Mycobacterium tuberculosis (M. tuberculosis) modulates host immune response, mainly T cell responses for its own survival leading to disease or latent infection. The molecules and mechanisms utilized to accomplish immune subversion by M. tuberculosis are not fully understood. Understanding the molecular mechanism of T cell response to M. tuberculosis is important for development of efficacious vaccine against TB. METHODS: Here, we investigated effect of M. tuberculosis antigens Ag85A and ESAT-6 on T cell signalling events in CD3/CD28 induced Peripheral blood mononuclear cells (PBMCs) of PPD+ve healthy individuals and pulmonary TB patients. We studied CD3 induced intracellular calcium mobilization in PBMCs of healthy individuals and TB patients by spectrofluorimetry, CD3 and CD28 induced activation of mitogen activated protein kinases (MAPKs) in PBMCs of healthy individuals and TB patients by western blotting and binding of transcription factors NFAT and NFκB by Electrophorectic mobility shift assay (EMSA). RESULTS: We observed CD3 triggered modulations in free intracellular calcium concentrations in PPD+ve healthy individuals and pulmonary TB patients after the treatment of M. tuberculosis antigens. As regards the downstream signalling events, phosphorylation of MAPKs, Extracellular signal-regulated kinase 1 and 2 (ERK1/2) and p38 was curtailed by M. tuberculosis antigens in TB patients whereas, in PPD+ve healthy individuals only ERK1/2 phosphorylation was inhibited. Besides, the terminal signalling events like binding of transcription factors NFAT and NFκB was also altered by M. tuberculosis antigens. Altogether, our results suggest that M. tuberculosis antigens, specifically ESAT-6, interfere with TCR/CD28-induced upstream as well as downstream signalling events which might be responsible for defective IL-2 production which further contributed in T-cell unresponsiveness, implicated in the progression of disease. CONCLUSION: To the best of our knowledge, this is the first study to investigate effect of Ag85A and ESAT-6 on TCR- and TCR/CD28- induced upstream and downstream signalling events of T-cell activation in TB patients. This study showed the effect of secretory antigens of M. tuberculosis in the modulation of T cell signalling pathways. This inflection is accomplished by altering the proximal and distal events of signalling cascade which could be involved in T-cell dysfunctioning during the progression of the disease.


Assuntos
Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Ativação Linfocitária/imunologia , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/metabolismo , Transdução de Sinais , Linfócitos T/imunologia , Linfócitos T/metabolismo , Aciltransferases/imunologia , Aciltransferases/metabolismo , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/metabolismo , Antígenos CD28/metabolismo , Cálcio/metabolismo , Humanos , Espaço Intracelular/metabolismo , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Fatores de Transcrição NFATC/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo
5.
Int J Nanomedicine ; 9: 1139-52, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24627632

RESUMO

Curcumin (diferuloylmethane) is found in large quantities in the roots of Curcuma longa. It possesses strong antioxidant and anti-inflammatory properties, and inhibits chemically-induced carcinogenesis in the skin, forestomach, colon, and liver. Unfortunately, the poor bioavailability and hydrophobicity of curcumin pose a major hurdle to its use as a potent anticancer agent. To circumvent some of these problems, we developed a novel, dual-core microcell formulation of curcumin. The encapsulation of curcumin in microcells increases its solubility and bioavailability, and facilitates slow release kinetics over extended periods. Besides being safe, these formulations do not bear any toxicity constraints, as revealed by in vitro and in vivo studies. Histopathological analysis revealed that curcumin-bearing microcells helped in regression of hepatocellular carcinoma and the maintenance of cellular architecture in liver tissue. Free curcumin had a very mild effect on cancer suppression. Empty (sham) microcells and microparticles failed to inhibit cancer cells. The novel curcumin formulation was found to suppress hepatocellular carcinoma efficiently in Swiss albino mice.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Curcumina/administração & dosagem , Sistemas de Liberação de Medicamentos , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Fitoterapia , Animais , Antineoplásicos Fitogênicos/farmacocinética , Antineoplásicos Fitogênicos/toxicidade , Disponibilidade Biológica , Sobrevivência Celular/efeitos dos fármacos , Curcumina/farmacocinética , Curcumina/toxicidade , Composição de Medicamentos/métodos , Feminino , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Humanos , Ácido Láctico/química , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/patologia , Camundongos , Nanomedicina , Nanopartículas/química , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Fator de Necrose Tumoral alfa/metabolismo
6.
Lipids Health Dis ; 11: 119, 2012 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-22985026

RESUMO

BACKGROUND: Advanced stages of leprosy show T cell unresponsiveness and lipids of mycobacterial origin are speculated to modulate immune responses in these patients. Present study elucidates the role of phenolicglycolipid (PGL-1) and Mannose-capped lipoarabinomannan (Man-LAM) on TCR- and TCR/CD28- mediated signalling. RESULTS: We observed that lipid antigens significantly inhibit proximal early signalling events like Zap-70 phosphorylation and calcium mobilization. Interestingly, these antigens preferentially curtailed TCR-triggered early downstream signalling events like p38 phosphorylation whereas potentiated that of Erk1/2. Further, at later stages inhibition of NFAT binding, IL-2 message, CD25 expression and T-cell blastogenesis by PGL-1 and Man-LAM was noted. CONCLUSION: Altogether, we report that Man-LAM and PGL-1 preferentially interfere with TCR/CD28-triggered upstream cell signalling events, leading to reduced IL-2 secretion and T-cell blastogenesis which potentially could lead to immunosupression and thus, disease exacerbation, as noted in disease spectrum.


Assuntos
Antígenos de Bactérias/farmacologia , Antígenos CD28/fisiologia , Glicolipídeos/farmacologia , Lipopolissacarídeos/farmacologia , Receptores de Antígenos de Linfócitos T/fisiologia , Linfócitos T/imunologia , Antígenos de Bactérias/imunologia , Antígenos CD28/metabolismo , Sinalização do Cálcio , Proliferação de Células , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Expressão Gênica , Regulação da Expressão Gênica , Glicolipídeos/imunologia , Interações Hospedeiro-Patógeno , Humanos , Imunidade Celular , Interleucina-2/genética , Interleucina-2/metabolismo , Subunidade alfa de Receptor de Interleucina-2/genética , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Células Jurkat , Hanseníase/imunologia , Hanseníase/microbiologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/microbiologia , Lipopolissacarídeos/imunologia , Ativação Linfocitária , Sistema de Sinalização das MAP Quinases , Mycobacterium leprae/imunologia , Fatores de Transcrição NFATC/metabolismo , Fosforilação , Regiões Promotoras Genéticas , Ligação Proteica , Proteína Quinase C/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/microbiologia , Proteína-Tirosina Quinase ZAP-70/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...