Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38456956

RESUMO

BACKGROUND AND OBJECTIVE: This study aims to investigate the role of Vitamin D (VD) in regulating the stemness and survival of CD133+/CD44 + breast cancer stem cells, and to explore the role of NLRP3 in this process. METHODS: Breast cancer tissues were collected for RXRα and VDR expression analysis. A triple-negative breast cancer cell line was cultured and stem-like cells (CD133 + CD44+) isolated using flow cytometry. These cells were treated with VD, analyzing their stem-like properties, apoptosis and proliferation, as well as P65 nuclear expression and NLRP3 expression. After NLRP3 inflammasome activator treatment, the parameters were reassessed. RXRα and VDR interaction was confirmed using co-immunoprecipitation (CoIP). Finally, a subcutaneous xenograft model of triple-negative breast cancer was treated with VD and subsequently analyzed for stem-like properties, proliferation, apoptosis, and NLRP3 expression levels. RESULTS: CD133+/CD44 + stem cells expressed high levels of SOX2 and OCT4. VD treatment resulted in a significant decrease in SOX2 and OCT4 expression, fewer sphere-forming colonies, lower proliferation ability, and more apoptosis. Additionally, VD treatment inhibited NF-κB signaling and reduced NLRP3 expression. The NLRP3 activator BMS-986,299 counteracted the effects of VD in vitro. In vivo, VD inhibited the growth of breast cancer stem cells, reducing both tumor volume and weight, and decreased NLRP3, SOX2, and OCT4 expression within tumor tissues. CONCLUSION: Findings elucidate that VD mediates the modulation of stemness in CD133+/CD44 + breast cancer stem cells through the regulation of NLRP3 expression. The research represents novel insights on the implications for the application of VD in cancer therapies.

2.
Onco Targets Ther ; 12: 721-732, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30774359

RESUMO

PURPOSE: Breast cancer is the most common cancer among women with ~1.67 million cases diagnosed annually worldwide, and ~1 in 37 women succumbed to breast cancer. Over the past decades, new therapeutic strategy has substantially improved the curative effect for women with breast cancer. However, the currently available ER-targeted and HER-2-based therapies are not effective for triple-negative breast cancer patients, which account for ~15% of total breast cancer cases. MATERIALS AND METHODS: We reported that 1,25-(OH)2D3, a biologically active form of vitamin D3, exhibited a strong anticancer effects on the proliferation, migration, invasion, cell cycle arrest, and apoptosis of both ER-positive (MCF-7) and ER-negative breast cancer cells (MDA-MB-453). RESULTS: The anticancer effect of 1,25-(OH)2D3 was more potent compared to the classical chemotherapeutics tamoxifen in MDA-MB-453 cells. Furthermore, we also found that 1,25-(OH)2D3 decreased the expression of Ras and resulted in decrease of the phosphorylation of downstream proteins MEK and ERK1/2, indicating that 1,25-(OH)2D3 plays its anticancer roles through targeting the Ras/MEK/ERK signaling pathway. In addition, Ras overexpression abrogated 1,25-(OH)2D3-induced G0/G1 cell cycle arrest and apoptosis of breast cancer cells, as well as the suppression of proliferation, migration, and invasion. Our study suggested that 1,25-(OH)2D3 suppressed breast cancer tumorigenesis by targeting the Ras/MEK/ERK signaling pathway. CONCLUSION: 1,25-(OH)2D3 might serve as a promising supplement for breast cancer drug therapy, especially for the ER-negative breast cancer and drug-resistant breast cancer.

3.
Biosci Rep ; 38(6)2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30314996

RESUMO

Objective: Cancer stem cells (CSCs) are responsible for the drug resistance of breast cancers. Vitamin D deficiency promotes tumor resistance. The present study examined the effect of vitamin D and vitamin D receptor (VDR) expression on the tamoxifen resistance of CSCs. Methods: MCF-7 cells were treated with 1,25(OH)2D3 and their levels of VDR expression, viability, and apoptosis were detected. CD133+ MCF-7 stem cells were identified and transfected with a VDR-overexpression plasmid. The tamoxifen concentration that reduced MCF-7 cell viability by 50% (IC50) was determined. The activation of Wnt/ß-catenin signaling was also investigated. Results: Vitamin D reduced the viability of MCF-7 cells and promoted their apoptosis. Vitamin D enhanced VDR expression and induced DNA damage. When CD133+ stem cells were separated from MCF-7 cells, the IC50 of tamoxifen for stem cells was significantly higher than that of parental MCF-7 cells, suggesting a higher tamoxifen resistance in MCF-7 stem cells. Levels of VDR expression and Wnt/ß-catenin signaling in CD133+ cells were markedly lower and higher than those in CD133- cells, respectively. Stem cells transfected with VDR overexpression plasmids showed decreased tamoxifen IC50 values, viability, spheroid formation, and expression of Wnt and ß-catenin proteins when compared with control cells. Cell apoptosis was increased by transfection with a VDR overexpression plasmid. Finally, the inhibitory effects induced by VDR overexpression could be reversed by the VDR inhibitor, calcifediol. Conclusion: Stem cells contributed to the tamoxifen resistance of MCF-7 cells. Vitamin D-induced VDR expression increased the sensitivity of MCF-7 stem cells to tamoxifen by inhibiting Wnt/ß-catenin signaling.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Receptores de Calcitriol/metabolismo , Tamoxifeno/farmacologia , Vitamina D/farmacologia , Vitaminas/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Células MCF-7 , Receptores de Calcitriol/análise , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...