Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 13(22)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38003138

RESUMO

The regulation of duck physiology and behavior through the photoperiod holds significant importance for enhancing poultry farming efficiency. To clarify the impact of the photoperiod on group-raised duck activeness and quantify duck activeness, this study proposes a method that employs a multi-object tracking model to calculate group-raised duck activeness. Then, duck farming experiments were designed with varying photoperiods as gradients to assess this impact. The constructed multi-object tracking model for group-raised ducks was based on YOLOv8. The C2f-Faster-EMA module, which combines C2f-Faster with the EMA attention mechanism, was used to improve the object recognition performance of YOLOv8. Furthermore, an analysis of the tracking performance of Bot-SORT, ByteTrack, and DeepSORT algorithms on small-sized duck targets was conducted. Building upon this foundation, the duck instances in the images were segmented to calculate the distance traveled by individual ducks, while the centroid of the duck mask was used in place of the mask regression box's center point. The single-frame average displacement of group-raised ducks was utilized as an intuitive indicator of their activeness. Farming experiments were conducted with varying photoperiods (24L:0D, 16L:8D, and 12L:12D), and the constructed model was used to calculate the activeness of group-raised ducks. The results demonstrated that the YOLOv8x-C2f-Faster-EMA model achieved an object recognition accuracy (mAP@50-95) of 97.9%. The improved YOLOv8 + Bot-SORT model achieved a multi-object tracking accuracy of 85.1%. When the photoperiod was set to 12L:12D, duck activeness was slightly lower than that of the commercial farming's 24L:0D lighting scheme, but duck performance was better. The methods and conclusions presented in this study can provide theoretical support for the welfare assessment of meat duck farming and photoperiod regulation strategies in farming.

2.
Animals (Basel) ; 13(18)2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37760278

RESUMO

In breeding ducks, obtaining the pose information is vital for perceiving their physiological health, ensuring welfare in breeding, and monitoring environmental comfort. This paper proposes a pose estimation method by combining HRNet and CBAM to achieve automatic and accurate detection of duck's multi-poses. Through comparison, HRNet-32 is identified as the optimal option for duck pose estimation. Based on this, multiple CBAM modules are densely embedded into the HRNet-32 network to obtain the pose estimation model based on HRNet-32-CBAM, realizing accurate detection and correlation of eight keypoints across six different behaviors. Furthermore, the model's generalization ability is tested under different illumination conditions, and the model's comprehensive detection abilities are evaluated on Cherry Valley ducklings of 12 and 24 days of age. Moreover, this model is compared with mainstream pose estimation methods to reveal its advantages and disadvantages, and its real-time performance is tested using images of 256 × 256, 512 × 512, and 728 × 728 pixel sizes. The experimental results indicate that for the duck pose estimation dataset, the proposed method achieves an average precision (AP) of 0.943, which has a strong generalization ability and can achieve real-time estimation of the duck's multi-poses under different ages, breeds, and farming modes. This study can provide a technical reference and a basis for the intelligent farming of poultry animals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...