Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 16(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38542816

RESUMO

The meat derived from mammals such as cows, sheep, and pigs is commonly referred to as red meat. Recent studies have shown that consuming red meat can activate the immune system, produce antibodies, and subsequently develop into tumors and cancer. This is due to the presence of a potential carcinogenic compound in red meat called N-ethanol neuraminic acid (Neu5Gc). Neu5Gc is a common sialic monosaccharide in mammals, synthesized from N-acetylneuraminic acid (Neu5Ac) in the body and typically present in most mammals. However, due to the lack of the CMAH gene encoding the cytidine 5'-monophosphate Neu5Ac hydroxylase, humans are unable to synthesize Neu5Gc. Compared to primates such as mice or chimpanzees, the specific loss of Neu5Gc expression in humans is attributed to fixed genome mutations in CMAH. Although Neu5Gc cannot be produced, it can be introduced from specific dietary sources such as red meat and milk, so it is necessary to use mice or chimpanzees that knock out the CMAH gene instead of humans as experimental models. Further research has shown that early pregnancy factor (EPF) has the ability to regulate CD4+T cell-dependent immune responses. In this study, we established a simulated human animal model using C57/BL6 mice with CMAH gene knockout and analyzed the inhibitory effect of EPF on red meat Neu5Gc-induced CMAH-/- C57/BL6 mouse antibody production and chronic inflammation development. The results showed that the intervention of EPF reduced slow weight gain and shortened colon length in mice. In addition, EPF treatment significantly reduced the levels of anti Neu5Gc antibodies in the body, as well as the inflammatory factors IL-6 and IL-1ß, TNF-α and the activity of MPO. In addition, it also alleviated damage to liver and intestinal tissues and reduced the content of CD4 cells and the expression of B cell activation molecules CD80 and CD86 in mice. In summary, EPF effectively inhibited Neu5Gc-induced antibody production, reduced inflammation levels in mice, and alleviated Neu5Gc-induced inflammation. This will provide a new re-search concept and potential approach for developing immunosuppressants to address safety issues related to long-term consumption of red meat.


Assuntos
Chaperonina 10 , Neoplasias , Proteínas da Gravidez , Carne Vermelha , Fatores Supressores Imunológicos , Feminino , Animais , Humanos , Camundongos , Bovinos , Suínos , Ovinos , Pan troglodytes , Formação de Anticorpos , Primatas , Inflamação , Mamíferos
2.
Molecules ; 29(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542909

RESUMO

N-glycolylneuraminic acid (Neu5Gc), a sialic acid predominantly found in the non-neurohumoral fluids of hind-mouthed animals, is incapable of synthesizing Neu5Gc due to a deletion in the CMAH exon of the gene encoding human CMP-Neu5Gc hydroxylase. But consumption of animal-derived foods that contain Neu5Gc, such as red meat, can instigate an immune response in humans, as Neu5Gc is recognized as a foreign substance by the human immune system. This recognition leads to the production of anti-Neu5Gc antibodies, subsequently resulting in chronic inflammation. When Neu5Gc is consumed excessively or frequently, it may contribute to the development of heart disease and cancer. This makes Neu5Gc, an endogenous pathogenic factor derived from red meat, a new hot topic in red meat safety research. In this study, aptamers obtained by the magnetic bead SELEX technique were subjected to homology and secondary structure prediction analysis as well as affinity determination. The result indicated that the aptamer 2B.N2A9 exhibited a robust binding affinity, with an affinity constant (Ka) of 1.87 × 108 L/mol. This aptamer demonstrated optimal binding specificity within a pH range of 5.4 to 7.4. Molecular docking analysis further revealed that aptamer 2B.N2A9 formed stable binding interactions with the target Neu5Gc at specific sites, namely G-14, C-15, G-13, G-58, G-60, and C-59. An Enzyme-Linked Oligonucleotide Sorbent Assay (ELOSA) methodology was established to detect the endogenous pathogenic factor Neu5Gc present in red meat. This method demonstrated a limit of detection (LOD) of 0.71 ng/mL, along with an average recovery rate of 92.23%. The aptamer obtained in this study exhibited favorable binding properties to Neu5Gc. The assay was relatively convenient and demonstrated good sensitivity. Further investigation into the distribution of Neu5Gc in various red meats is of public health significance and scientific potential. A practical detection method should be provided to guide red meat diets and ensure the nutrition and safety of meat products.


Assuntos
Ácido N-Acetilneuramínico , Carne Vermelha , Animais , Humanos , Simulação de Acoplamento Molecular , Inflamação , Oligonucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...