Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 19(49): e2303129, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37616518

RESUMO

Piezocatalysis has increasingly gained prominence due to its enormous potential for addressing energy shortages and environmental pollution issues. Nonetheless, the low piezocatalytic activity of state-of-the-art materials seriously inhibits the practical applications of piezocatalysis. Here, it is proposed to greatly enhance the piezocatalytic activity for a perovskite ferroelectric, i.e., Sm-doped 0.68Pb(Mg1/3 Nb2/3 )-0.32PbTiO3 (Sm-PMN-PT, a solid solution with ultrahigh piezoelectricity), by introducing oxygen vacancies (OVs). The results show that the presence of OVs promotes the production of reactive oxygen species while enhancing the adsorption and activation of organic pollutants to improve piezocatalytic performance. The OV-Sm-PMN-PT is found to possess a superior piezocatalytic degradation rate constant of 0.073 min-1 under ultrasonic vibration, which is ≈4.9 times higher than that of pristine Sm-PMN-PT. Furthermore, the OV-Sm-PMN-PT can efficiently remove RhB under 400 rpm stirring, making it a promising candidate for water purification using low-frequency mechanical energy from nature. This research sheds light on the design of piezocatalytic materials via defect engineering.

2.
J Food Sci ; 84(6): 1353-1361, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31066915

RESUMO

Gibberellic acid (GA3) was added to three types of beer barley, and the chemical changes to GA3 during the beer brewing process were studied using HPLC. The results demonstrated that the GA3 concentration decreased throughout the malting, mashing, and boiling processes and that no GA3 was detected in the congress wort. A new substance, herein called Substance A, was detected by HPLC analysis using a C18 column; this substance exhibited retention characteristics different from GA3. The concentration of Substance A increased throughout the malting, mashing, and boiling processes. Mass spectrometry revealed that Substance A has the same molecular weight as GA3 and nuclear magnetic resonance studies determined that Substance A is a structural isomer of GA3. PRACTICAL APPLICATION: This study developed a new idea to understand GA3 behavior during the brewing, which provided a practical reference for food safety in beer and other fields using GA3 as a food additive.


Assuntos
Cerveja/análise , Giberelinas/química , Hordeum/química , Cromatografia Líquida de Alta Pressão , Inocuidade dos Alimentos , Humanos , Isomerismo , Espectroscopia de Ressonância Magnética , Espectrometria de Massas
3.
Anal Chem ; 87(13): 6752-60, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26024017

RESUMO

Electrospray ionization (ESI) is the preferred mode of ion generation for mass analysis of many organic species, as alternative ionization techniques can lead to appreciable analyte fragmentation. For this reason, ESI is an ideal method for the analysis of species within aerosol particles. However, because of their low concentrations (∼10 µg/m(3)) in most environments, ESI has been applied sparingly in aerosol particle analysis; aerosol mass spectrometers typically employ analyte volatilization followed by electron ionization or chemical ionization, which can lead to a considerable degree of analyte fragmentation. Here, we describe an approach to apply ESI to submicrometer and nanometer scale aerosol particles, which utilizes unipolar ionization to charge particles, electrostatic precipitation to collect particles on the tip of a Tungsten rod, and subsequently, by flowing liquid over the rod, ESI and mass analysis of the species composing collected particles. This technique, which we term electrostatic precipitation-ESI-MS (EP-ESI-MS), is shown to enable analysis of nanogram quantities of collected particles (from aerosol phase concentrations as low as 10(2) ng m(-3)) composed of cesium iodide, levoglucosan, and levoglucosan within a carbon nanoparticle matrix. With EP-ESI-MS, the integrated mass spectrometric signals are found to be a monotonic function of the mass concentration of analyte in the aerosol phase. We additionally show that EP-ESI-MS has a dynamic range of close to 5 orders of magnitude in mass, making it suitable for molecular analysis of aerosol particles in laboratory settings with upstream particle size classification, as well as analysis of PM 2.5 particles in ambient air.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...