Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biometeorol ; 68(5): 909-925, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38363363

RESUMO

Intensive urban development has resulted in the degradation of the urban thermal environment in most regions. There is a growing consensus on the need to enhance urban thermal comfort through well-designed forms, especially in open spaces like urban canyons. To address this, our study focuses on Xi'an's commercial pedestrian streets, employing K-means clustering analysis to create 32 representative models based on actual scenes, capturing their textural characteristics. Simultaneously, 11 geometric indicators (2D/3D) were chosen to quantify the canyon's geometric form. We assessed the spatial and temporal distribution differences in the thermal environment across these models using Envi-met simulation. Finally, Spearman correlation analysis was employed to examine the correlation and significance of the two sets of indicators, culminating in formulating an ideal model. The findings reveal that (1) wind conditions are predominantly influenced by the canyon's geometric form, followed by solar radiation and temperature, with the lowest relative humidity change amplitude among the assessed thermal parameters. (2) Among the 11 geometric form indicators, 3D indicators correlate more significantly with thermal environment parameters than 2D indicators. Specifically, street orientation significantly impacts the thermal environment, Build-To-Line Rat holds greater significance than interface density, and both building shape coefficient and block surface ratio are significantly correlated with air temperature and wind speed, with a weaker correlation to solar radiation. (3) In the Xi'an region, courtyards oriented north-south demonstrate a more favorable trend in the thermal environment.


Assuntos
Cidades , Pedestres , Estações do Ano , Humanos , China , Temperatura , Modelos Teóricos , Ambiente Construído , Vento , Sensação Térmica , Umidade , Análise por Conglomerados
2.
PeerJ ; 12: e16784, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38239300

RESUMO

Background: Investigating the relationship between cyclooxygenase-2 (COX-2) pathway-related factors and clinical features in patients with adenomyosis by proteomics could provide potential therapeutic targets. Methods: This study recruited 40 patients undergoing surgical hysterectomy and pathological diagnosis of adenomyosis, collected ectopic endometrial specimens, and recorded clinical data. The expression levels of COX-2 in ectopic uterus lesions were detected using the immunohistochemical (IHC) SP method. The 40 samples were then divided into a COX-2 low or high expression group. Five samples with the most typical expression levels were selected from each of the two groups and the differential proteins between the two groups were identified using label-free quantitative proteomics. WW domain-binding protein 2 (WBP2), interferon induced transmembrane protein 3 (IFITM3), and secreted frizzled-related protein 4 (SFRP4) were selected for further verification, and their relationships with COX-2 and clinical characteristics were analyzed. Results: There were statistically significant differences in the expression of WBP2, IFITM3, and SFRP4 between the COX-2 low and high expression groups (P < 0.01). The expressions of COX-2, IFITM3, and SFRP4 were significantly correlated with dysmenorrhea between the two groups (P < 0.05), but not with uterine size or menstrual volume (P > 0.05). However, there was no significant correlation between the expression of WBP2 and dysmenorrhea, uterine size, and menstruation volume in both the high expression and low expression groups (P > 0.05). Conclusions: COX-2, IFITM3, SFRP4, and WBP2 may be involved in the pathogenesis of adenomyosis. COX-2, IFITM3, and SFRP4 may serve as potential molecular biomarkers or therapeutic targets in dysmenorrhea in patients with early adenomyosis.


Assuntos
Adenomiose , Feminino , Humanos , Adenomiose/metabolismo , Dismenorreia/etiologia , Ciclo-Oxigenase 2/metabolismo , Proteômica , Útero/metabolismo , Transativadores/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Ligação a RNA
3.
Onco Targets Ther ; 16: 425-440, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37359351

RESUMO

Purpose: Ovarian cancer is the most lethal malignancy in gynecology. Due to limited treatment strategies and platinum resistance, newer drugs and therapeutic options are needed. Esomeprazole (ESO) has been reported to have multiple anticancer activities in preclinical and clinical research. Therefore, this study aimed to explore the anticancer effects of esomeprazole on ovarian cancer and its underlying molecular mechanisms. Methods: CCK-8 and 5-ethynyl-2'-deoxyuridine (EdU) assays were used to detect cell viability and proliferation. The Transwell assay was used to evaluate cell migration and invasion capacity. Flow cytometry was used to detect cell apoptosis. Western blotting and immunofluorescence were used to detect protein expression. Results: ESO effectively inhibited the cell viability, proliferation, invasion, migration, and induced apoptosis of ovarian cancer cells in a concentration-dependent manner. Treatment with ESO decreased the expression of c-MYC, SKP2, E2F1, N-cadherin, vimentin, and matrix metalloproteinase 2 (MMP2), while it increased E-cadherin, caspase3, p53, BAX, and cleaved poly (ADP-ribose) polymerase (PARP) expression, and downregulated the PI3K/AKT/mTOR signaling pathway. Furthermore, ESO combined with cisplatin showed synergistic effects in inhibiting proliferation, invasion, and migration of cisplatin-resistant ovarian cancer cells. The mechanism may be related to the increased inhibition of c-MYC, epithelial-mesenchymal transition (EMT), and the AKT/mTOR signaling pathway and enhanced the upregulation of the pro-apoptotic protein BAX and cleaved PARP levels. Moreover, ESO combined with cisplatin synergistically upregulated the expression of the DNA damage marker γH2A.X. Conclusion: ESO exerts multiple anticancer activities and has a synergistic effect in combination with cisplatin on cisplatin-resistant ovarian cancer cells. This study provides a promising strategy to improve chemosensitivity and overcome resistance to cisplatin in ovarian cancer.

4.
Am J Transl Res ; 13(4): 2858-2866, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34017449

RESUMO

OBJECTIVE: This study aimed to explore the effect of COX-2 selective inhibitor (celecoxib) on adenomyosis and its mechanism. METHODS: By establishing a mouse model of adenomyosis and using celecoxib to treat adenomyosis, newly born female mice were randomly divided into a control group, adenomyosis model group, and celecoxib group. Hematoxylin-eosin (H&E) staining was used to observe the depth of endometrial infiltration of mouse adenomyosis. RT-PCR (reverse transcription PCR) and western blot were used to detect the expression of Cyclooxygenase-2 (COX-2), Vascular growth factor (VEGF), Nerve growth factor (NGF), and Corticotropin-releasing hormone (CRH) mRNA and protein in mice before and after celecoxib treatment. RESULTS: After treatment with celecoxib, the depth of endometrial infiltration of mouse adenomyosis was reduced. COX-2 and VEGF decreased significantly after celecoxib inhibited expression of COX-2 (P<0.001), but there was no significant difference in the expression of NGF or CRH (P>0.05). CONCLUSION: This study indicated that COX-2 may be an important factor related to the pathogenesis of adenomyosis, and it may become an important molecular target for the treatment of adenomyosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...