Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 275(Pt 2): 133559, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38955300

RESUMO

pH could play vital role in the wound healing process due to the bacterial metabolites, which is one essential aspect of desirable wound dressings lies in being pH-responsive. This work has prepared a degradable hyaluronic acid hydrogel dressing with wound pH response-ability. The aldehyde-modified hyaluronic acid (AHA) was obtained, followed by complex mixture formation of eugenol and oregano antibacterial essential oil in the AHA-CMCS hydrogel through the Schiff base reaction with carboxymethyl chitosan (CMCS). This hydrogel composite presents pH-responsiveness, its disintegration mass in acidic environment (pH = 5.5) is 4 times that of neutral (pH = 7.2), in which the eugenol release rate increases from 37.6 % to 82.1 %. In vitro antibacterial and in vivo wound healing investigations verified that hydrogels loaded with essential oils have additional 5 times biofilm removal efficiency, and significantly accelerate wound healing. Given its excellent anti-biofilm and target-release properties, the broad application of this hydrogel in bacteria-associated wound management is anticipated.

2.
Int J Biol Macromol ; 270(Pt 1): 132028, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38704066

RESUMO

Clinical therapy for widespread infections caused by Streptococcus pneumoniae (S. pneumoniae), such as community-acquired pneumonia, is highly challenging. As an important bacterial toxin, hydrogen peroxide (H2O2) secreted by S. pneumoniae can suppress the host's immune system and cause more severe disease. To address this problem, a hyaluronic acid (HA)-coated inorganic catalase-driven Janus nanomotor was developed, which can cleverly utilize and decompose H2O2 to reduce the burden of bacterial infection, and have excellent drug loading capacity. HA coating prevents rapid leakage of loaded antibiotics and improves the biocompatibility of the nanomaterials. The Janus nanomotor converted H2O2 into oxygen (O2), gave itself the capacity to move actively, and encouraged widespread dispersion in the lesion site. Encouragingly, animal experiments demonstrated that the capability of the nanomotors to degrade H2O2 contributes to diminishing the proliferation of S. pneumoniae and lung tissue damage. This self-propelled drug delivery platform provides a new therapeutic strategy for infections with toxin-secreting bacteria.


Assuntos
Catalase , Ácido Hialurônico , Peróxido de Hidrogênio , Streptococcus pneumoniae , Ácido Hialurônico/química , Catalase/metabolismo , Catalase/química , Streptococcus pneumoniae/efeitos dos fármacos , Animais , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Camundongos , Nanoestruturas/química , Humanos , Pneumonia/tratamento farmacológico
3.
Int J Biol Macromol ; 271(Pt 2): 132536, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38777021

RESUMO

The enhancement of antimicrobial wound dressings is of utmost importance in light of the escalating risk of antibiotic resistance caused by excessive antibiotic usage. Conventional antimicrobial materials eradicate pathogenic bacteria while impeding the proliferation of beneficial bacteria during the management of wound infections, thereby disturbing the equilibrium of the skin micro-ecosystem and engendering recurrent cutaneous complications. Lactobacillus rhamnosus (L.rha) is a probiotic that can inhibit the growth of certain pathogenic bacteria by secreting a large number of metabolites. In this paper, we synthesized a cross-linker (SPBA) with a boric acid molecule from succinic acid and 4-(bromomethyl)phenylboronic acid, which formed a boric acid ester bond with a diol on the natural polysaccharide sodium alginate (SA), and obtained a pH/reactive oxygen species (ROS) dual-responsive hydrogel (SA-SPBA) for loading L.rha to treat wound infections. The SA-SPBA@L.rha hydrogel improves the survival of L.rha during storage and has good injectability as well as self-healing properties. The hydrogel showed good biocompatibility, the antimicrobial effect increases in a dose-dependent manner, and it has a certain antioxidant and anti-inflammatory capacity, accelerating wound repair. The use of SA-SPBA@L.rha hydrogel provides a safe and effective strategy for the repair of skin wound infections.


Assuntos
Alginatos , Antibacterianos , Hidrogéis , Espécies Reativas de Oxigênio , Infecção dos Ferimentos , Alginatos/química , Hidrogéis/química , Hidrogéis/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Concentração de Íons de Hidrogênio , Animais , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia , Camundongos , Antibacterianos/farmacologia , Antibacterianos/química , Lacticaseibacillus rhamnosus/química , Cicatrização/efeitos dos fármacos , Humanos , Antioxidantes/farmacologia , Antioxidantes/química
4.
Redox Biol ; 73: 103217, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38820984

RESUMO

Wound infection of hyperglycemic patient often has extended healing period and increased probability due to the high glucose level. However, achieving precise and safe therapy of the hyperglycemic wound with specific wound microenvironment (WME) remains a major challenge. Herein, a WME-activated smart L-Arg/GOx@TA-Fe (LGTF) nanozymatic system composed of generally recognized as safe (GRAS) compound is engineered. The nanozymatic system combining metal-polyphenol nanozyme (tannic acid-Fe3+, TA-Fe) and natural enzyme (glucose oxidase, GOx) can consume the high-concentration glucose, generating reactive oxygen species (ROS) and nitric oxide (NO) in situ to synergistically disinfect hyperglycemia wound. In addition, glucose consumption and gluconic acid generation can lower glucose level to promote wound healing and reduce the pH of WME to enhance the catalytic activities of the LGTF nanozymatic system. Thereby, low-dose LGTF can perform remarkable synergistic disinfection and healing effect towards hyperglycemic wound. The superior biosafety, high catalytic antibacterial and beneficial WME regulating capacity demonstrate this benign GRAS nanozymatic system is a promising therapeutic agent for hyperglycemic wound.


Assuntos
Glucose Oxidase , Hiperglicemia , Óxido Nítrico , Espécies Reativas de Oxigênio , Cicatrização , Cicatrização/efeitos dos fármacos , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Óxido Nítrico/metabolismo , Animais , Glucose Oxidase/metabolismo , Humanos , Camundongos , Glucose/metabolismo , Ratos , Antibacterianos/farmacologia , Antibacterianos/química
5.
ACS Appl Mater Interfaces ; 16(15): 18400-18410, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38576193

RESUMO

Drug-resistant bacterial infection and biofilm formation are the key inhibitors of wound healing, and new strategies are urgently needed to address these issues. In this study, we designed a pH-responsive co-assembled peptide hydrogel to inhibit Methicillin-resistant Staphylococcus aureus (MRSA) infection and promote wound healing. We synthesized a cationic short peptide (Nap-FFKKK) and a co-assembled hydrogel with curcumin at pH ∼ 7.8. The loaded curcumin was continuously released in a weak acid environment (pH ∼ 5.5). The lysine-rich cationic peptide inhibited biofilm formation in MRSA via electrostatic interaction with the negatively charged bacterial cell surface and, thus, provided a reinforcing antibacterial effect with curcumin. In vitro antibacterial experiments showed that the co-assembled system considerably reduced the minimum inhibitory concentration of curcumin against MRSA by 10-fold and promoted wound healing in a mouse model of MRSA-infected wounds. This study provides a simple and promising strategy to treat drug-resistant bacterial infections in wounds.


Assuntos
Infecções Bacterianas , Curcumina , Staphylococcus aureus Resistente à Meticilina , Infecção dos Ferimentos , Animais , Camundongos , Hidrogéis , Antibacterianos , Peptídeos , Cicatrização , Concentração de Íons de Hidrogênio
6.
Mol Nutr Food Res ; 68(2): e2300337, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38048544

RESUMO

SCORE: This study identifies the coding gene (aldB) of acetolactate decarboxylase (ALDC) as an important regulatory gene of the intracellular pH in Lactobacillus reuteri (L. reuteri), uncovering the important role of ALDC in regulating intracellular pH, morphological features, and antagonism properties in the probiotic organism L. reuteri. METHODS AND RESULTS: The aldB mutant (ΔaldB) of L. reuteri is established using the homologous recombination method. Compare to the wild-type (WT) strain, the ΔaldB strain shows a smaller body size, grows more slowly, and contains more acid in the cell cytoplasm. The survival rate of the ΔaldB strain is much lower in low pH and simulated gastric fluid (SGF) than that of the WT strain, but higher in simulated intestinal fluid (SIF). The antagonism test demonstrates the ΔaldB strain can inhibit Listeria monocytogenes (L. monocytogenes) and Salmonella more effectively than the WT strain. Additionally, there is a dramatic decrease in the adhesion rate of Salmonella to Caco-2 and HT-29 cells in the presence of the ΔaldB strain compared to the WT strain. Simultaneously analyze, the auto-aggregation, co-aggregation, cell surface hydrophobicity (CSH), hemolytic, temperature, NaCl, oxidative stress, and antibiotic susceptibility of the ΔaldB strain are consistent with the features of probiotics. CONCLUSION: This study highlights that the aldB gene plays a significant role in the growth and antibacterial properties of L. reuteri.


Assuntos
Carboxiliases , Limosilactobacillus reuteri , Probióticos , Humanos , Células CACO-2 , Probióticos/farmacologia , Concentração de Íons de Hidrogênio
7.
ACS Nano ; 17(16): 15568-15589, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37531599

RESUMO

Due to the increasing antibiotic resistance and the lack of broad-spectrum antibiotics, there is an urgent requirement to develop fresh strategies to combat multidrug-resistant pathogens. Herein, defect-rich bismuth molybdate heterojunctions [zero-dimensional (0D) Bi4MoO9/two-dimensional (2D) Bi2MoO6, MBO] were designed for rapid capture of bacteria and synergistic photocatalytic sterilization. The as-prepared MBO was experimentally and theoretically demonstrated to possess defects, heterojunctions, and irradiation triple-enhanced photocatalytic activity for efficient generation of reactive oxygen species (ROS) due to the exposure of more active sites and separation of effective electron-hole pairs. Meanwhile, dopamine-modified MBO (pMBO) achieved a positively charged and rough surface, which conferred strong bacterial adhesion and physical penetration to the nanosheets, effectively trapping bacteria within the damage range and enhancing ROS damage. Based on this potent antibacterial ability of pMBO, a multifunctional hydrogel consisting of poly(vinyl alcohol) cross-linked tannic acid-coated cellulose nanocrystals (CPTB) and pMBO, namely CPTB@pMBO, is developed and convincingly effective against methicillin-resistant Staphylococcus aureus in a mouse skin infection model. In addition, the strategy of combining a failed beta-lactam antibiotic with CPTB@pMBO to photoinactivation with no resistance observed was developed, which presented an idea to address the issue of antibiotic resistance in bacteria and to explore facile anti-infection methods. In addition, CPTB@pMBO can reduce excessive proteolysis of tissue and inflammatory response by regulating the expression of genes and pro-inflammatory factors in vivo, holding great potential for the effective treatment of wound infections caused by drug-resistant bacteria.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Animais , Camundongos , Bismuto/farmacologia , Bismuto/química , Hidrogéis/farmacologia , Espécies Reativas de Oxigênio/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química
8.
Int J Biol Macromol ; 245: 125506, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37356691

RESUMO

Pathogenic bacteria residing inside cells could cause disruption of cellular metabolic balance. Therefore, basing on high oxidative stress response of the intracellular bacteria infected micro-environment, a novel amphipathic micelle (HATAD-TCS) was developed consisting of hyaluronic acid-derivative and reactive oxygen species (ROS) - responsive group and antibacterial agent triclosan (TCS). ROS-generating cinnamaldehyde (CA) was incorporated into ROS-cleavable linkages which are future linked to the 1-decylamine to form hydrophobicity. The cinnamaldehyde released did not just killed bacteria however, also maintained intracellular ROS levels. In this study, the HATAD-TCS micelles have been characterized by scanning electron microscopy (SEM) and dynamic light scattering (DLS). The HATAD-TCS micelles could release drug gradually upon exposure to endogenous ROS being caused by infected intracellular bacteria. Furthermore, the more promising therapeutic effect of the HATAD-TCS micelles was observed in a mouse pneumonia model. These results might highlight a ROS-responsive hyaluronic acid-based nanoparticle, which could effectively treat intracellular bacterial infections.


Assuntos
Infecções Bacterianas , Micelas , Animais , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Ácido Hialurônico
9.
Int J Biol Macromol ; 222(Pt A): 1476-1486, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36195227

RESUMO

Probiotics are generally used as therapeutic intervention in inflammatory bowel disease. However, the low survival rate in harsh gastrointestinal environment and limited retention in intestine greatly restrict their health benefits. To address this problem, a ROS-responsive hydrogel based on hyaluronic acid (HA) was developed for encapsulation and targeted delivery of probiotics. The hydrogel was prepared facilely by physiological crosslink with methacrylated HA and thiolated thioketal. As a model probiotic, Lactobacillu reuteri showed a significantly increased survival rate in simulated digestive conditions after encapsulated in hydrogel. The negative properties conferred the hydrogel preferential adhesions to inflammation sites. Meanwhile, the excess reactive oxygen species (ROS) produced by inflamed colon tissues selectively cleaved thioketal linkages resulted in hydrogel degradation and local probiotics release. Furthermore, the hydrogel exerted an appropriate ROS-scavenge capacity and protected HT-29 cells from oxidative damage. Animal experiments indicated that hydrogel-encapsulated L. reuteri could remarkably alleviate the symptoms and improve the survival rate of mice with dextran sulfate sodium (DSS)-induced colitis. These results suggested that the biocompatible hydrogel may be a delivery platform to target inflamed intestines and expand the application of probiotics as pharmaceuticals.


Assuntos
Colite , Probióticos , Camundongos , Animais , Ácido Hialurônico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sulfato de Dextrana/efeitos adversos , Hidrogéis/uso terapêutico , Modelos Animais de Doenças , Colite/induzido quimicamente , Colite/tratamento farmacológico , Probióticos/uso terapêutico , Colo/metabolismo
10.
Comput Math Methods Med ; 2022: 4559982, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35991138

RESUMO

Objective: To analyze the in vitro antibacterial and antibiofilm activities of lysozyme (LYS) and its combination with various drugs against Gram-positive bacteria (GPB, n = 9), thus to provide an exploration direction for drug development. Methods: The minimum inhibitory concentrations (MICs) of linezolid (LZD), amikacin (AMK), ceftriaxone/sulbactam (CRO/SBT), cefotaxime/sulbactam (CTX/SBT), piperacillin/sulbactam (PIP/SBT), doxycycline (DOX), levofloxacin (LVX), amoxicillin/clavulanate potassium (7 : 1, AK71), imipenem (IPM), azithromycin (AZM), and their combinations with LYS were determined with tuber twice dilution. The antimicrobial and antibiofilm activities of LYS, AZM, LVX, and their combinations with others were evaluated through MTT and crystal violet assay. Results: High-dose LYS (30 µg/mL) combined with PIP/SBT and AK71, respectively, showed synergistic antibacterial activities against methicillin-resistant Staphylococcus aureus (MRSA), while it showed no synergistic activities when combined with other drugs. LYS and AZM inhibited the biofilm formation of one MRSA strain, but they and LVX had no similar activities against methicillin-resistant Staphylococcus epidermidis (MRSE) or vancomycin-resistant Enterococcus faecium (VREF). Particularly, LYS increased the permeability of biofilms of MRSA 33 and exhibited antibiofilm activities against MRSA 31 (inhibition rate = 38.1%) and MRSE 61 (inhibition rate = 46.6%). The combinations of PIP/SBT+LYS, AMK+LYS, and LZD+LYS showed stronger antibiofilm activities against MRSA 62, MRSE 62, MRSE 63, and VREF 11. Conclusion: The antimicrobial and antibiofilm activities of LYS against MRSA were better than AZM, while that of LYS against MRSE and VREF, respectively, was similar with AZM and LVX.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Biofilmes , Bactérias Gram-Positivas , Humanos , Linezolida/farmacologia , Muramidase/farmacologia , Sulbactam
11.
Int J Biol Macromol ; 219: 1009-1020, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-35926673

RESUMO

Vancomycin (Van) remains one of the first-line drugs for the treatment of wound infections caused by methicillin-resistant Staphylococcus aureus (MRSA). However, the unsatisfactory bioavailability of vancomycin alone has greatly limited its potential health benefits. Here a responsive chitosan-based hydrogel was developed as the delivery system which not only would reduce this side effect but also increase efficacy of vancomycin. The hydrogel was prepared by grafting chitosan and cinnamaldehyde-based thioacetal (CTA) together with ginipin (G) as the crosslinker. Upon exposure to reactive oxygen species which were enriched in the bacterial wound, the hydrogel can locally degrade and sustainably release the loaded vancomycin near the lesion to compete with the troubling MRSA. Compared with vancomycin alone, the chitosan-based hydrogel loaded with vancomycin demonstrated accelerated acute wound healing. This achievement reveals that this multi-functional hydrogel may be a promising drug-delivery device for improving the efficacy of local antibiotic therapy.


Assuntos
Quitosana , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Quitosana/farmacologia , Hidrogéis/farmacologia , Espécies Reativas de Oxigênio/farmacologia , Vancomicina/farmacologia , Vancomicina/uso terapêutico
12.
J Colloid Interface Sci ; 610: 893-904, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34863557

RESUMO

In recent years, graphitic carbon nitride (g-C3N4) has been developed greatly in the domain of water treatment. We adopted one-step calcination to enhance the light absorption of g-C3N4 with melamine-sponge (MS). A novel form of photocatalysts (gCNMx, x  = 0.1, 0.2 and 0.3) were successfully prepared. The color of gCNMx changed with addition of MS. Experimental analysis demonstrated that C-doping and N vacancies increased the capacity of light absorption of gCNM0.2, and further increased efficiency of photothermal conversion and photogenerated holes. The sterilization efficiency of gCNM0.2 could rival a variety of metal photocatalysts. Moreover, the preparation of gCNM0.2 was cost-effective and environmental-friendly. Interestingly, the inactivation efficacy of gCNM0.2 for S. aureus depended heavily on the photogenerated holes, however, the decisive force toward S. typhimurium was photothermal conversion.


Assuntos
Staphylococcus aureus , Esterilização , Catálise , Nitrilas , Triazinas
13.
Microbiol Spectr ; 9(3): e0039921, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34878295

RESUMO

Escherichia coli K1 causes bacteremia and meningitis in human neonates. The K1 capsule, an α2,8-linked polysialic acid (PSA) homopolymer, is its essential virulence factor. PSA is usually partially modified by O-acetyl groups. It is known that O-acetylation alters the antigenicity of PSA, but its impact on the interactions between E. coli K1 and host cells is unclear. In this study, a phase variant was obtained by passage of E. coli K1 parent strain, which expressed a capsule with 44% O-acetylation whereas the capsule of the parent strain has only 3%. The variant strain showed significantly reduced adherence and invasion to macrophage-like cells in comparison to the parent strain. Furthermore, we found that O-acetylation of PSA enhanced the modulation of trafficking of E. coli-containing vacuoles (ECV), enabling them to avoid fusing with lysosomes in these cells. Intriguingly, by using quartz crystal microbalance, we demonstrated that the PSA purified from the parent strain interacted with human sialic acid-binding immunoglobulin-like lectins (Siglecs), including Siglec-5, Siglec-7, Siglec-11, and Siglec-14. However, O-acetylated PSA from the variant interacted much less and also suppressed the production of Siglec-mediated proinflammatory cytokines. The adherence of the parent strain to human macrophage-like cells was significantly blocked by monoclonal antibodies against Siglec-11 and Siglec-14. Furthermore, the variant strain caused increased bacteremia and higher lethality in neonatal mice compared to the parent strain. These data elucidate that O-acetylation of K1 capsule enables E. coli to escape from Siglec-mediated innate immunity and lysosomal degradation; therefore, it is a strategy used by E. coli K1 to regulate its virulence. IMPORTANCE Escherichia coli K1 is a leading cause of neonatal meningitis. The mortality and morbidity of this disease remain significantly high despite antibiotic therapy. One major limitation on advances in prevention and therapy for meningitis is an incomplete understanding of its pathogenesis. E. coli K1 is surrounded by PSA, which is observed to have high-frequency variation of O-acetyl modification. Here, we present an in-depth study of the function of O-acetylation in PSA at each stage of host-pathogen interaction. We found that a high level of O-acetylation significantly interfered with Siglec-mediated bacterial adherence to macrophage-like cells, and blunted the proinflammatory response. Furthermore, the O-acetylation of PSA modulated the trafficking of ECVs to prevent them from fusing with lysosomes, enabling them to escape degradation by lysozymes within these cells. Elucidating how subtle modification of the capsule enhances bacterial defenses against host innate immunity will enable the future development of effective drugs or vaccines against infection by E. coli K1.


Assuntos
Cápsulas Bacterianas/imunologia , Infecções por Escherichia coli/imunologia , Escherichia coli/imunologia , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/imunologia , Ácidos Siálicos/imunologia , Acetilação , Animais , Escherichia coli/genética , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Interações Hospedeiro-Patógeno , Humanos , Evasão da Resposta Imune , Imunidade Inata , Lisossomos/imunologia , Lisossomos/microbiologia , Masculino , Camundongos , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/genética , Vacúolos/imunologia , Vacúolos/microbiologia
14.
Int J Biol Macromol ; 183: 2074-2087, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34097961

RESUMO

Lycium barbarum polysaccharides (LBPs) are known for their beneficial effects on diabetes, NAFLD and related chronic metabolic diseases induced by high-fat diet (HFD). However, the relevant researches are mainly about the whole crude polysaccharides, the specific active ingredient of LBPs and its bioactivity have been rarely explored. Herein, a homogeneous polysaccharide (LBP-W) was isolated and purified from crude LBPs. Structure characterizations indicated that LBP-W contained a main chain consisting of a repeated unit of →6)-ß-Galp(1 â†’ residues with branches composed of α-Araf, ß-Galp and α-Rhap residues at position C-3. The objective of this study was to evaluate the anti-obesogenic effect of LBP-W and figure out the underlying mechanisms. In vivo efficacy trial illustrated that LBP-W supplements can alleviate HFD-induced mice obesity significantly. Gut microbiota analysis showed that LBP-W not only improved community diversity of intestinal flora, but also regulated their specific genera. Moreover, LBP-W can increase the content of short-chain fatty acids (SCFAs), a metabolite of the intestinal flora. In summary, all these results demonstrated that the homogeneous polysaccharide purified from L. barbarum could be used as a prebiotic agent to improve obesity by modulating the composition of intestinal flora and the metabolism of SCFAs.


Assuntos
Fármacos Antiobesidade/farmacologia , Bactérias/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Metabolismo Energético/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Obesidade/tratamento farmacológico , Prebióticos , Animais , Fármacos Antiobesidade/química , Arabinose/química , Arabinose/farmacologia , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Biomarcadores/sangue , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/química , Disbiose , Ácidos Graxos/sangue , Galactose/química , Galactose/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Estrutura Molecular , Obesidade/sangue , Obesidade/microbiologia , Ramnose/química , Ramnose/farmacologia , Relação Estrutura-Atividade
15.
ACS Appl Mater Interfaces ; 13(9): 10902-10915, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33629587

RESUMO

It is well known that the photothermal conversion performance of solar-driven interfacial water evaporation systems is known to have a stronger photothermal conversion performance than suspended water evaporation systems due to their relatively strong ability to suppress overall heat loss. Natural polymer chitosan and gelatin can form a three-dimensional interpenetrating network (IPN) sponge to provide an interface for water evaporation due to strong hydrogen bonding and electrostatic attraction interaction. However, the lack of effective light absorption, the intrinsic short lifetime, and the poor photothermal conversion greatly compromise their steam generation performance. Here, we fabricated a chitosan/gelatin-based IPN sponge incorporated with melanin-coated titania hollow nanospheres (CG@MPT-h) as a solar thermal converter, which is designed to exhibit a unique cavity structure and vertical channels. The cavity structure of melanin-coated titania acts as a solar thermal transducer, while the chitosan/gelatin-based IPN sponge acts as a single-pass water pump. A water hyacinth-inspired evaporation system shows outstanding steam generation performance, and the highest steam generation rate was 3.17 kg m-2 h-1 under a 2.5 sun illumination because of the cavity enhancement effect, far above TiO2 particles and reported photo-thermal conversion materials. More importantly, the embedding of MPT-h nanoparticles in the IPN sponge effectively inhibits the growth of bacteria in the vertical channels, resulting in an antibacterial solar-driven water evaporator. This advanced sponge provides a cost-effective and practical sustainable energy technique for solar-driven wastewater treatment.

16.
ACS Appl Mater Interfaces ; 12(33): 36967-36977, 2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32702229

RESUMO

Probiotics were found to be effective in ameliorating the microbial dysbiosis and inflammation caused by intestinal pathogens. However, biological challenges encountered during oral delivery have greatly limited their potential health benefits. Here, a model probiotic (Lactobacillus rhamnosus) was encapsulated in an intestinal-targeted hydrogel to alleviate bacterial enteritis in a novel mode. The hydrogel was prepared simply by the self-cross-linking of thiolated hyaluronic acid. Upon exposure to H2S which were excreted by surrounding intestinal pathogens, the hydrogel can locally degrade and rapidly release cargos to compete with source pathogens in turn for binding to the host. The mechanical properties of hydrogel were studied by rheological analysis, and the ideal stability was achieved at a polymer concentration of 4% (w/v). The morphology of the optimal encapsulation system was further measured by a scanning electron microscope, exhibiting uniform payload of probiotics. Endurance experiments indicated that the encapsulation of L. rhamnosus significantly enhanced their viability under gastrointestinal tract insults. Compared with free cells, encapsulated L. rhamnosus exerted better therapeutic effect against Salmonella-induced enteritis with negligible toxicity in vivo. These results demonstrate that this redox-responsive hydrogel may be a promising encapsulation and delivery system for improving the efficacy of orally administered probiotics.


Assuntos
Cápsulas/química , Enterite/terapia , Ácido Hialurônico/química , Hidrogéis/química , Intestinos/microbiologia , Lacticaseibacillus rhamnosus/metabolismo , Probióticos/administração & dosagem , Animais , Carga Bacteriana , Materiais Biocompatíveis/química , Cápsulas/administração & dosagem , Cápsulas/metabolismo , Reagentes de Ligações Cruzadas/química , Células HT29 , Humanos , Ácido Hialurônico/metabolismo , Hidrogéis/administração & dosagem , Hidrogéis/metabolismo , Concentração de Íons de Hidrogênio , Camundongos , Viabilidade Microbiana , Oxirredução , Células RAW 264.7 , Reologia , Compostos de Sulfidrila/química
17.
Int J Biol Macromol ; 159: 373-382, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32422255

RESUMO

We explored the possibility of improving the viability of Akkermansia muciniphila by encapsulating it in succinate-grafted alginate doped with epigallocatechin-3-gallate (EGCG). In this study, the determined surface properties of microcapsules and modified materials and the measured viability of probiotics after spray drying showed that the modified sodium alginate made the surfaces of microcapsules smoother and denser during the spray drying, thus preventing damages. EGCG enhanced the antioxidant capacity of probiotics by filling the pores inside microgels. Moreover, we analyzed the long-term storage vitality changes, oxidation resistance, uniformity, particle size and Zeta potential of microcapsules and found that spray-dried modified sodium alginate microcapsules with EGCG showed the better storability and stability. In addition, we experimentally analyzed the resistances of different microcapsules to the gastrointestinal fluid and found that EGCG-modified sodium alginate microcapsules better protected the probiotic activity from gastrointestinal fluid. This study provides a slimming product with industrial application potential.


Assuntos
Akkermansia/efeitos dos fármacos , Alginatos/química , Catequina/análogos & derivados , Viabilidade Microbiana/efeitos dos fármacos , Fosfatidiletanolaminas/química , Ácido Succínico/química , Antioxidantes/química , Antioxidantes/farmacologia , Cápsulas/química , Catequina/química , Materiais Revestidos Biocompatíveis/química , Espectroscopia de Ressonância Magnética , Microgéis/química , Estrutura Molecular , Oxirredução , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
18.
Int J Biol Macromol ; 156: 640-647, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32304789

RESUMO

Biofilms and intracellular bacteria often cause a series of overwhelming public health issues due to their strong drug resistance. Hence, chitosan nanoparticles (CS NPs), phosphatidylcholine and gentamicin were used to synthesize a novel nanodrug delivery system (GPC NPs). Dynamic light scattering (DLS) demonstrated that the surface zeta-potential of GPC NPs was -19.5 mV. The morphology of GPC NPs was observed by scanning electron microscopy (SEM). The gentamicin adsorption and release behaviors of GPC NPs were also investigated. The GPC NPs could effectively damage and remove the biofilm formed by pathogens through permeation of the antibiotic into the biofilm. In addition, the nanoparticles were readily engulfed by macrophages which facilitated the killing of intracellular bacteria and had neglectable cytotoxicity. Our study indicated that GPC NPs could be used as a promising nanoantibacterial agent against biofilms and intracellular bacteria.


Assuntos
Quitosana/química , Portadores de Fármacos/química , Gentamicinas/administração & dosagem , Nanopartículas/química , Fosfatidilcolinas/química , Bactérias/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Estabilidade de Medicamentos , Gentamicinas/química , Gentamicinas/farmacologia , Testes de Sensibilidade Microbiana
19.
Int J Biol Macromol ; 155: 103-109, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32224180

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most common causes of hospital infection. Here, we showed that hyaluronic acid modified organic metal framework material ZIF-8 could be a Trojan horse of vancomycin (Van) for effective treatment of MRSA infections. The Van-loaded nanoparticles were readily up-taken by macrophages via a CD44-mediated process and collapsed in the acidic condition of endosome/lysosome, as a consequence, it could eradicate MRSA with high efficiency in macrophages. This drug delivery system with negligible toxicity could resolve MRSA infections in a well-established mouse pneumonia model.


Assuntos
Portadores de Fármacos/química , Ácido Hialurônico/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Nanopartículas/química , Pneumonia Estafilocócica/tratamento farmacológico , Zeolitas/química , Animais , Antibacterianos/farmacologia , Feminino , Camundongos , Células RAW 264.7 , Vancomicina/farmacologia
20.
Glycoconj J ; 37(3): 361-371, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32140855

RESUMO

Radix Paeoniae Alba is widely used in Chinese traditional medicine to treat various diseases such as gastrointestinal disorders, immunomodulatory, cancer, and other diseases. In this paper, a novel acidic polysaccharide RPAPS purified from Radix Paeoniae Alba was evaluated for its structural features and potential of immunomodulatory and antioxidant activities. RPAPS (molecular weight: 1.0× 105 Da) was mainly composed of α-(1 → 4)-Glcp, α-Arap, α-Galp, α-Rhap, ß-D-Glcp, α-(1 → 6)-linked Glcp and GalA. Immunological tests indicated that RPAPS could improve RAW264.7 phagocytic activity and LPS-induced splenocyte proliferation. For antioxidant activities, RPAPS showed reducing power and DPPH scavenging activity in dose dependent. Moreover, RPAPS could significantly protect the PC12 cells from H2O2 damage. These data implied polysaccharides RPAPS had the potential to be novel natural antioxidative and immunopotentiating agents for using in functional foods or medicine.


Assuntos
Antioxidantes , Paeonia , Animais , Antioxidantes/química , Peróxido de Hidrogênio/análise , Medicina Tradicional Chinesa , Paeonia/química , Raízes de Plantas/química , Polissacarídeos/química , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...