Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(4): 6391-6408, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38439343

RESUMO

In the design of metasurfaces, integrating multiple tasks into a single small unit cell and achieving regulation through various paths pose a serious challenge. In this paper, a multipath-controlled bidirectional metasurface (MCBM) is designed to achieve polarization regulation, perfect absorption and total reflection as multitasking functions. The findings demonstrate that under different excitation conditions, when co-planar polarized terahertz (THz) waves are incident normally on the metasurface, the MCBM can convert co-planar polarization to cross-polarization, co-planar polarization to circular polarization wave in reflection mode, and co-planar polarization to cross-polarization in transmission, respectively. When co-planar polarized THz waves are incident from the back side of the metasurface, the tasks of MCBM change to broadband perfect absorption, total reflection, and transmission co-planar polarization to cross-polarization conversion. Remarkably, all operating frequency bands of these tasks are very approximate. Additionally, the multitasking functions can be switched by altering the excitation conditions, and their performance can be regulated through multipath controls, such as the temperature, voltage, and polarization status. Our design provides an effective strategy for multipath-controlled multitasking integrated devices in the THz band.

2.
Micromachines (Basel) ; 15(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38542582

RESUMO

This paper presents a waveguide Lens antenna at the W-band adopting dual-focusing Lens to improve the performance. The Lens antenna consisted of a waveguide slotted structure and lenses processed using NOA73 meet the demands of miniaturization for current communication systems. The antenna radome fabricated using NOA73 not only protects the antenna structure but also improves the gain of the antenna by about 9.5 dBi via electromagnetic wave dual-focusing. A prototype is fabricated using novel UV-LIGA technology. Measured results are compared with simulated values. Measured results confirmed the fabricated antenna operated in the W-band with a 10 dB fractional bandwidth (FBW) of 6.5% from 97.5 to 104 GHz and a peak gain of 22 dBi at 100 GHz in the direction perpendicular to the plane of the feed waveguide. A good agreement between simulation and measurement is obtained, demonstrating efficient radiations in the operating band.

3.
Opt Express ; 31(18): 29280-29299, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37710732

RESUMO

The prevalent use of multispectral detection technology makes single-band camouflage devices ineffective, and the investigation of technology for camouflage that combines multispectral bands becomes urgent. The multifunctional-hierarchical flexibility metasurfaces (MHFM) for multispectral compatible camouflage of microwave, infrared, and visible, is proposed, fabricated, and measured. MHFM is primarily composed of an infrared shielding layer (IRSL), a radar absorbing layer (RAL), and a visible color layer (VCL). Among them, IRSL can block thermal infrared detection, and RAL can efficiently absorb microwave band electromagnetic (EM) waves. The VLC can display black (below 28°C), purple (28°C∼31°C), green (31°C∼33°C), and yellow (above 33°C) at different temperatures to achieve visible camouflage. Simulation results show that MHFM can achieve absorption higher than 90% in the 2.9∼13.9 GHz microwave band. Theoretically, the emissivity of MHFM in the infrared spectral range 3∼14 µm is less than 0.34. In addition, the MHFM consists of high-temperature-resistant materials that can be used normally at temperatures up to 175°C, providing excellent high-temperature stability. The measurement results show that the camouflage performance of the MHFM is in excellent agreement with the proposed theory. This study proposes a new method for multispectral camouflage that has broad engineering applications.

4.
Micromachines (Basel) ; 13(10)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36296065

RESUMO

A dual-band metasurface array is presented in this paper for electromagnetic (EM) energy harvesting in the Wi-Fi band and Ku band. The array consists of metasurface unit cells, rectifiers, and load resistors. The metasurface units within each column are interconnected to establish two channels of energy delivery, enabling the transmission and aggregation of incident power. At the terminals of two channels, a single series diode rectifier and a voltage doubler rectifier are integrated into them to rectify the energy in the Wi-Fi band and the Ku band, respectively. A 7 × 7 prototype of the metasurface array is fabricated and tested. The measured results in the anechoic chamber show that the RF-to-dc efficiencies of the prototype at 2.4 GHz and 12.6 GHz reach 64% and 55% accordingly, when the available incident power at the surface is 3 dBm and 14 dBm, respectively.

5.
Biosensors (Basel) ; 12(8)2022 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-36005007

RESUMO

The precise control of target particles (20 µm) at different inclination angles θi is achieved by combining a perturbed asymmetric sheathless Y-type microchannel and a digital transducer (IDT). The offset single-row micropillar array with the buffer area can not only concentrate large and small particles in a fixed region of the flow channel, but also avoid the large deflection of some small particles at the end of the array. The addition of the buffer area can effectively improve the separation purity of the chip. By exploring the manufacturing process of the microchannel substrate, an adjustable tilted-angle scheme is proposed. The use of ataTSAW makes the acoustic field area in the microchannel have no corner effect region. Through experiments, when the signal source frequency was 33.6 MHz, and the flow rate was 20 µL/min, our designed chip could capture 20 µm particles when θi = 5°. The deflection of 20 µm particles can be realized when θi = 15°-45°. The precise dynamic separation of 20 µm particles can be achieved when θi = 25°-45°, and the separation purity and efficiency were 97% and 100%, respectively.


Assuntos
Som , Transdutores
6.
Biosensors (Basel) ; 12(5)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35624627

RESUMO

The combination of the new perturbed spiral channel and a slanted gold interfingered transducer (IDT) is designed to achieve precise dynamic separation of target particles (20 µm). The offset micropillar array solves the defect that the high-width flow (avoiding the occurrence of channel blockage) channel cannot realize the focusing of small particles (5 µm, 10 µm). The relationship between the maximum design gap of the micropillar (Smax) and the particle radius (a) is given: Smax = 4a, which not only ensures that small particles will not pass through the micropillar gap, but also is compatible with the appropriate flow rates. A non-offset micropillar array was used to remove 20 µm particles in the corner area. The innovation of a spiral channel structure greatly improves the separation efficiency and purity of the separation chip. The separation chip designed by us achieves deflection separation of 20 µm particles at 24.95-41.58 MHz (κ = 1.09-1.81), at a flow rate of 1.2 mL per hour. When f = 33.7 MHz (κ = 1.47), the transverse migration distance of 20 µm particles is the smallest, and the separation purity and efficiency are as high as 92% and 100%, respectively.


Assuntos
Som , Transdutores , Tamanho da Partícula
7.
Micromachines (Basel) ; 13(1)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35056282

RESUMO

Cell separation has become @important in biological and medical applications. Dielectrophoresis (DEP) is widely used due to the advantages it offers, such as the lack of a requirement for biological markers and the fact that it involves no damage to cells or particles. This study aimed to report a novel approach combining 3D sidewall electrodes and contraction/expansion (CEA) structures to separate three kinds of particles with different sizes or dielectric properties continuously. The separation was achieved through the interaction between electrophoretic forces and inertia forces. The CEA channel was capable of sorting particles with different sizes due to inertial forces, and also enhanced the nonuniformity of the electric field. The 3D electrodes generated a non-uniform electric field at the same height as the channels, which increased the action range of the DEP force. Finite element simulations using the commercial software, COMSOL Multiphysics 5.4, were performed to determine the flow field distributions, electric field distributions, and particle trajectories. The separation experiments were assessed by separating 4 µm polystyrene (PS) particles from 20 µm PS particles at different flow rates by experiencing positive and negative DEP. Subsequently, the sorting performances of the 4 µm PS particles, 20 µm PS particles, and 4 µm silica particles with different solution conductivities were observed. Both the numerical simulations and the practical particle separation displayed high separating efficiency (separation of 4 µm PS particles, 94.2%; separation of 20 µm PS particles, 92.1%; separation of 4 µm Silica particles, 95.3%). The proposed approach is expected to open a new approach to cell sorting and separating.

8.
Sensors (Basel) ; 21(18)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34577287

RESUMO

Although wearable antennas have made great progress in recent years, how to design high-performance antennas suitable for most wireless communication systems has always been the direction of RF workers. In this paper, a new approach for the design and manufacture of a compact, low-profile, broadband, omni-directional and conformal antenna is presented, including the use of a customized flexible dielectric substrate with high permittivity and low loss tangent to realize the compact sensing antenna. Poly-di-methyl-siloxane (PDMS) is doped a certain proportion of aluminum trioxide (Al2O3) and Poly-tetra-fluoro-ethylene (PTFE) to investigate the effect of dielectric constant and loss tangent. Through a large number of comparative experiments, data on different doping ratios show that the new doped materials are flexible enough to increase dielectric constant, reduce loss tangent and significantly improve the load resistance capacity. The antenna is configured with a multisection microstrip stepped impedance resonator structure (SIR) to expand the bandwidth. The measured reflection return loss (S11) showed an operating frequency band from 0.99 to 9.41 GHz, with a band ratio of 146%. The antenna covers two important frequency bands, 1.71-2.484 GHz (personal communication system and wireless body area network (WBAN) systems) and 5.15-5.825 GHz (wireless local area network-WLAN)]. It also passed the SAR test for human safety. Therefore, the proposed antenna offers a good chance for full coverage of WLAN and large-scale development of wearable products. It also has potential applications in communication systems, wireless energy acquisition systems and other wireless systems.


Assuntos
Dispositivos Eletrônicos Vestíveis , Tecnologia sem Fio , Comunicação , Desenho de Equipamento , Humanos , Redes Locais
9.
Sensors (Basel) ; 20(16)2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32824445

RESUMO

Sensor technology is one of the three pillars of information technology. This paper aims to discuss the problems of insensitive detection, poor stability, and uncomfortable wearing of sensors in the fields of human-computer interaction, 5G communication, and medical detection. A sensing unit with a microstructured flexible sensing front end is a cone-like structure with a single size of 18-22 µm. They are evenly distributed and can reach 2500 units per square millimeter. In the pressure range, the sensitivity of the sensor unit is 0.6 KPa-1 (no microstructure sensitivity at 0.15 KPa-1), and the response time is fast (<600 ms). After 400 repeated stretching experiments, the sensor unit can still maintain a stable output signal. Due to its flexible characteristics (50% tensile conductivity), the sensor unit can act on human skin and other curved surfaces. According to the prepared sensing unit, good test results can be obtained on the testing of mechanical devices, curved surfaces of human bodies, and non-contact methods. It is observed that the flexible sensor can be applied to various test occasions, and the manufacturing process of the sensing unit will provide new ideas and methods for the preparation of the flexible sensor technology.

10.
Appl Opt ; 58(12): 3115, 2019 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-31044785

RESUMO

This publisher's note amends the author listing in Appl. Opt.57, 10257 (2018)APOPAI0003-693510.1364/AO.57.010257.

11.
Appl Opt ; 57(35): 10257-10263, 2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30645239

RESUMO

In this paper, a flexible ultrawideband metamaterial absorber (MMA) with multiple perfect absorption peaks has been proposed and investigated. In this design, we choose the rubber as the dielectric layer to achieve flexibility and select the split square ring to reach multiple perfect absorbing peaks. For the simulation results, the three-layer absorber that reaches 90% absorptivity has achieved 3.87 to 10.84 GHz. Then, we propose a five-layer absorber for easy facilitation, whose absorptivity reaching 90% has achieved 3.78 to 9.85 GHz, and the absorption peak has reached 99.99%, 100%, 100%, and 99.99% at 4, 5.82, 8.46, and 9.71 GHz, respectively.

12.
Materials (Basel) ; 10(12)2017 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-29258232

RESUMO

As the core component of the sense of touch, flexible pressure sensors are critical to synchronized interactions with the surrounding environment. Here, we introduce a new type of flexible capacitive pressure sensor based on a template of electrodes, with a one-dimensional pyramid micropatterned structure on a Polydimethylsiloxane (PDMS) substrate and a dielectric layer of polystyrene (PS) microspheres. The proposed sensor exhibits a stable and high sensing sensitivity of 0.741 kPa-1 to capacitance, good durability over 1000 cycles, and fast response time (<150 ms). Our flexible capacitive sensor responds not only to pressure but also to bending forces. Our device can be used to monitor the location and distribution of weight pressure. The proposed capacitive pressure sensor has itself been applied foreground in lots of aspects, such as electronic skins, wearable robotics, and biomedical devices.

13.
Nanoscale Res Lett ; 12(1): 515, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28856603

RESUMO

This work presents a multi-degrees-of-freedom motion parameter measurement method based on the use of cross-coupling diffraction gratings that were prepared on the two sides of a polydimethylsiloxane (PDMS) substrate using oxygen plasma processing technology. The laser beam that travels pass the cross-coupling optical grating would be diffracted into a two-dimensional spot array. The displacement and the gap size of the spot-array were functions of the movement of the laser source, as explained by the Fraunhofer diffraction effect. A 480 × 640 pixel charge-coupled device (CCD) was used to acquire images of the two-dimensional spot-array in real time. A proposed algorithm was then used to obtain the motion parameters. Using this method and the CCD described above, the resolutions of the displacement and the deflection angle were 0.18 µm and 0.0075 rad, respectively. Additionally, a CCD with a higher pixel count could improve the resolutions of the displacement and the deflection angle to sub-nanometer and micro-radian scales, respectively. Finally, the dynamic positions of hovering rotorcraft have been tracked and checked using the proposed method, which can be used to correct the craft's position and provide a method for aircraft stabilization in the sky.

14.
Sensors (Basel) ; 16(12)2016 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-27983656

RESUMO

Flexible pressure sensors are essential components of electronic skins for future attractive applications ranging from human healthcare monitoring to biomedical diagnostics, robotic skins, and prosthetic limbs. Here we report a new kind of flexible pressure sensor. The sensors are capacitive, and composed of two Ag wrinkled electrodes separated by a carbon nanotubes (CNTs)/polydimethylsiloxane (PDMS) composite deformable dielectric layer. Ag wrinkled electrodes were formed by vacuum deposition on top of pre-strained and relaxed PDMS substrates which were treated using an O2 plasma, a surface functionalization process, and a magnetron sputtering process. Ultimately, the developed sensor exhibits a maximum sensitivity of 19.80% kPa-1 to capacitance, great durability over 500 cycles, and rapid mechanical responses (<200 ms). We also demonstrate that our sensor can be used to effectively detect the location and distribution of finger pressure.

15.
Sensors (Basel) ; 16(8)2016 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-27455280

RESUMO

The theory, design, simulation, fabrication, and performance of an omnidirectional polarization detector (PD) with two resonances located in the X and Ka ranges based on a metamaterial absorber (MMA) are presented in this paper. The sandwich structure of PD is composed of 0.1 µm periodic "I" shaped patches on the metasurface, a dielectric of 200 µm FR-4 on the interlayer, and a 0.3 µm copper film on the substrate. PD absorptivity is first used to reflect and describe the polarization of the incident wave. The numerical results, derived from the standard full wave finite integration technology (FIT) of CST 2015, indicates that the designed PD shows polarization sensitivity at all incidence angles. The effects on absorptivity produced by the incidence angles, polarization angles, and materials are investigated. The amplitude of absorptivity change caused by polarization reaches 99.802%. A laser ablation process is adopted to prepare the designed PD on a FR-4 board coated with copper on the double plane with a thickness that was 1/93 and 1/48 of wavelength at a resonance frequency of 16.055 GHz and 30.9 GHz, respectively. The sample test results verify the designed PD excellent detectability on the polarization of the incident waves. The proposed PD, which greatly enriches the applications of metamaterials in bolometers, thermal images, stealth materials, microstructure measurements, and electromagnetic devices, is easy to mass produce and market because of its strong detectability, ultrathin thickness, effective cost, and convenient process.

16.
Micromachines (Basel) ; 7(10)2016 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30404362

RESUMO

In this paper, we design, fabricate and characterize a new electromagnetically actuated variable-focus liquid lens which consists of two polymethyl methacrylate (PMMA) substrates, a SU-8 substrate, a polydimethylsiloxane (PDMS) membrane, a permanent magnet and a planar electromagnetic actuator. The performance of this liquid lens is tested from four aspects including surface profiling, optical observation, variation of focal length and dynamic response speed. The results shows that with increasing current, the optical chamber PDMS membrane bulges up into a shape with a smaller radius of curvature, and the picture recorded by a charge-coupled device (CCD) camera through the liquid lens also gradually becomes blurred. As the current changes from -1 to 1.2 A, the whole measured focal length of the proposed liquid lens ranges from -133 to -390 mm and from 389 to 61 mm. Then a 0.8 A square-wave current is applied to the electrode, and the actuation time and relaxation time are 340 and 460 ms, respectively. The liquid lens proposed in the paper is easily integrated with microfluidic chips and medical detecting instruments due to its planar structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...