Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Commun (Lond) ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997794

RESUMO

The intrinsic oncogenic mechanisms and properties of the tumor microenvironment (TME) have been extensively investigated. Primary features of the TME include metabolic reprogramming, hypoxia, chronic inflammation, and tumor immunosuppression. Previous studies suggest that senescence-associated secretory phenotypes that mediate intercellular information exchange play a role in the dynamic evolution of the TME. Specifically, hypoxic adaptation, metabolic dysregulation, and phenotypic shifts in immune cells regulated by cellular senescence synergistically contribute to the development of an immunosuppressive microenvironment and chronic inflammation, thereby promoting the progression of tumor events. This review provides a comprehensive summary of the processes by which cellular senescence regulates the dynamic evolution of the tumor-adapted TME, with focus on the complex mechanisms underlying the relationship between senescence and changes in the biological functions of tumor cells. The available findings suggest that components of the TME collectively contribute to the progression of tumor events. The potential applications and challenges of targeted cellular senescence-based and combination therapies in clinical settings are further discussed within the context of advancing cellular senescence-related research.

2.
J Adv Res ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38677545

RESUMO

BACKGROUND: N6-methyladenosine (m6A) RNA methylation modifications have been widely implicated in the metabolic reprogramming of various cell types within the tumor microenvironment (TME) and are essential for meeting the demands of cellular growth and maintaining tissue homeostasis, enabling cells to adapt to the specific conditions of the TME. An increasing number of research studies have focused on the role of m6A modifications in glucose, amino acid and lipid metabolism, revealing their capacity to induce aberrant changes in metabolite levels. These changes may in turn trigger oncogenic signaling pathways, leading to substantial alterations within the TME. Notably, certain metabolites, including lactate, succinate, fumarate, 2-hydroxyglutarate (2-HG), glutamate, glutamine, methionine, S-adenosylmethionine, fatty acids and cholesterol, exhibit pronounced deviations from normal levels. These deviations not only foster tumorigenesis, proliferation and angiogenesis but also give rise to an immunosuppressive TME, thereby facilitating immune evasion by the tumor. AIM OF REVIEW: The primary objective of this review is to comprehensively discuss the regulatory role of m6A modifications in the aforementioned metabolites and their potential impact on the development of an immunosuppressive TME through metabolic alterations. KEY SCIENTIFIC CONCEPTS OF REVIEW: This review aims to elaborate on the intricate networks governed by the m6A-metabolite-TME axis and underscores its pivotal role in tumor progression. Furthermore, we delve into the potential implications of the m6A-metabolite-TME axis for the development of novel and targeted therapeutic strategies in cancer research.

3.
Biomed Pharmacother ; 174: 116479, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537580

RESUMO

RNA methylation modifications are widespread in eukaryotes and prokaryotes, with N6-methyladenosine (m6A) the most common among them. Demethylases, including Fat mass and obesity associated gene (FTO) and AlkB homolog 5 (ALKBH5), are important in maintaining the balance between RNA methylation and demethylation. Recent studies have clearly shown that demethylases affect the biological functions of tumors by regulating their m6A levels. However, their effects are complicated, and even opposite results have appeared in different articles. Here, we summarize the complex regulatory networks of demethylases, including the most important and common pathways, to clarify the role of demethylases in tumors. In addition, we describe the relationships between demethylases and the tumor microenvironment, and introduce their regulatory mechanisms. Finally, we discuss evaluation of demethylases for tumor diagnosis and prognosis, as well as the clinical application of demethylase inhibitors, providing a strong basis for their large-scale clinical application in the future.


Assuntos
Adenosina , Adenosina/análogos & derivados , Neoplasias , Microambiente Tumoral , Humanos , Adenosina/metabolismo , Neoplasias/genética , Neoplasias/patologia , Neoplasias/enzimologia , Metilação , Animais , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/genética , Regulação Neoplásica da Expressão Gênica
4.
J Hematol Oncol ; 15(1): 84, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794625

RESUMO

The tumor microenvironment (TME), which is regulated by intrinsic oncogenic mechanisms and epigenetic modifications, has become a research hotspot in recent years. Characteristic features of TME include hypoxia, metabolic dysregulation, and immunosuppression. One of the most common RNA modifications, N6-methyladenosine (m6A) methylation, is widely involved in the regulation of physiological and pathological processes, including tumor development. Compelling evidence indicates that m6A methylation regulates transcription and protein expression through shearing, export, translation, and processing, thereby participating in the dynamic evolution of TME. Specifically, m6A methylation-mediated adaptation to hypoxia, metabolic dysregulation, and phenotypic shift of immune cells synergistically promote the formation of an immunosuppressive TME that supports tumor proliferation and metastasis. In this review, we have focused on the involvement of m6A methylation in the dynamic evolution of tumor-adaptive TME and described the detailed mechanisms linking m6A methylation to change in tumor cell biological functions. In view of the collective data, we advocate treating TME as a complete ecosystem in which components crosstalk with each other to synergistically achieve tumor adaptive changes. Finally, we describe the potential utility of m6A methylation-targeted therapies and tumor immunotherapy in clinical applications and the challenges faced, with the aim of advancing m6A methylation research.


Assuntos
Neoplasias , Microambiente Tumoral , Ecossistema , Humanos , Hipóxia , Metilação , Neoplasias/tratamento farmacológico , RNA/uso terapêutico , Microambiente Tumoral/genética
5.
J Transl Med ; 20(1): 320, 2022 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842634

RESUMO

As an important component of the immunosuppressive tumor microenvironment (TME), it has been established that mesenchymal stem cells (MSCs) promote the progression of tumor cells. MSCs can directly promote the proliferation, migration, and invasion of tumor cells via cytokines and chemokines, as well as promote tumor progression by regulating the functions of anti-tumor immune and immunosuppressive cells. MSCs-derived extracellular vesicles (MSCs-EVs) contain part of the plasma membrane and signaling factors from MSCs; therefore, they display similar effects on tumors in the immunosuppressive TME. The tumor-promoting role of macrophage migration inhibitory factor (MIF) in the immunosuppressive TME has also been revealed. Interestingly, MIF exerts similar effects to those of MSCs in the immunosuppressive TME. In this review, we summarized the main effects and related mechanisms of tumor-associated MSCs (TA-MSCs), TA-MSCs-EVs, and MIF on tumors, and described their relationships. On this basis, we hypothesized that TA-MSCs-EVs, the MIF axis, and TA-MSCs form a positive feedback loop with tumor cells, influencing the occurrence and development of tumors. The functions of these three factors in the TME may undergo dynamic changes with tumor growth and continuously affect tumor development. This provides a new idea for the targeted treatment of tumors with EVs carrying MIF inhibitors.


Assuntos
Vesículas Extracelulares , Fatores Inibidores da Migração de Macrófagos , Células-Tronco Mesenquimais , Neoplasias , Vesículas Extracelulares/metabolismo , Humanos , Oxirredutases Intramoleculares/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Microambiente Tumoral
6.
J Biomed Sci ; 29(1): 14, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35189894

RESUMO

All cells, including prokaryotes and eukaryotes, could release extracellular vesicles (EVs). EVs contain many cellular components, including RNA, and surface proteins, and are essential for maintaining normal intercellular communication and homeostasis of the internal environment. EVs released from different tissues and cells exhibit excellent properties and functions (e.g., targeting specificity, regulatory ability, physical durability, and immunogenicity), rendering them a potential new option for drug delivery and precision therapy. EVs have been demonstrated to transport antitumor drugs for tumor therapy; additionally, EVs' contents and surface substance can be altered to improve their therapeutic efficacy in the clinic by boosting targeting potential and drug delivery effectiveness. EVs can regulate immune system function by affecting the tumor microenvironment, thereby inhibiting tumor progression. Co-delivery systems for EVs can be utilized to further improve the drug delivery efficiency of EVs, including hydrogels and liposomes. In this review, we discuss the isolation technologies of EVs, as well as engineering approaches to their modification. Moreover, we evaluate the therapeutic potential of EVs in tumors, including engineered extracellular vesicles and EVs' co-delivery systems.


Assuntos
Antineoplásicos , Vesículas Extracelulares , Neoplasias , Antineoplásicos/metabolismo , Comunicação Celular , Sistemas de Liberação de Medicamentos , Vesículas Extracelulares/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Microambiente Tumoral
7.
Cancer Lett ; 526: 29-40, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34800567

RESUMO

Mesenchymal stem cells (MSCs) are multipotent stromal cells that have the ability to differentiate into multiple cell types. Several studies have shown that exosomes secreted by MSCs (MSCs-Exo) play an important role in tumor growth, angiogenesis, invasion, and drug resistance. However, contradictory results have suggested that MSCs-Exo can also suppress tumors through specific mechanisms, such as regulating immune responses and intercellular signaling. Consequently, the relationship between MSCs-Exo and tumors remains controversial. However, it is undeniable that exosomes, as natural vesicles, can be excellent drug carriers and show promise for application in targeted tumor therapy. Here, we review the current knowledge regarding the involvement of MSCs-Exo in tumor progression and their potential as drug delivery systems in targeted therapy. We argue that MSCs-Exo can be used as safe carriers of antitumor drugs.


Assuntos
Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Neoplasias/terapia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...