Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 278: 116430, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38718729

RESUMO

Copper (Cu) serves as an essential cofactor in all organisms, yet excessive Cu exposure is widely recognized for its role in inducing liver inflammation. However, the precise mechanism by which Cu triggers liver inflammation in ducks, particularly in relation to the interplay in gut microbiota regulation, has remained elusive. In this investigation, we sought to elucidate the impact of Cu exposure on liver inflammation through gut-liver axis in ducks. Our findings revealed that Cu exposure markedly elevated liver AST and ALT levels and induced liver inflammation through upregulating pro-inflammatory cytokines (IL-1ß, IL-6 and TNF-α) and triggering the LPS/TLR4/NF-κB signaling pathway. Simultaneously, Cu exposure induced alterations in the composition of intestinal flora communities, notably increasing the relative abundance of Sphingobacterium, Campylobacter, Acinetobacter and reducing the relative abundance of Lactobacillus. Cu exposure significantly decreased the protein expression related to intestinal barrier (Occludin, Claudin-1 and ZO-1) and promoted the secretion of intestinal pro-inflammatory cytokines. Furthermore, correlation analysis was observed that intestinal microbiome and gut barrier induced by Cu were closely related to liver inflammation. Fecal microbiota transplantation (FMT) experiments further demonstrated the microbiota-depleted ducks transplanting fecal samples from Cu-exposed ducks disturbed the intestinal dysfunction, which lead to impaire liver function and activate the liver inflammation. Our study provided insights into the mechanism by which Cu exposure induced liver inflammation in ducks through the regulation of gut-liver axis. These results enhanced our comprehension of the potential mechanisms driving Cu-induced hepatotoxicity in avian species.


Assuntos
Cobre , Patos , Microbioma Gastrointestinal , Lipopolissacarídeos , Fígado , Transdução de Sinais , Receptor 4 Toll-Like , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fígado/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Cobre/toxicidade , Citocinas/metabolismo , Inflamação/induzido quimicamente , Inflamação/patologia , Doença Hepática Induzida por Substâncias e Drogas/patologia
2.
Genes (Basel) ; 15(2)2024 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-38397170

RESUMO

The egg-laying performance of Shan Ma ducks (Anas Platyrhynchos) is a crucial economic trait. Nevertheless, limited research has been conducted on the egg-laying performance of this species. We examined routine blood indicators and observed higher levels of metabolic and immune-related factors in the high-egg-production group compared with the low-egg-production group. Furthermore, we explored the ovarian transcriptome of both high- and low-egg-production groups of Shan Ma ducks using Illumina NovaSeq 6000 sequencing. A total of 1357 differentially expressed genes (DEGs) were identified, with 686 down-regulated and 671 up-regulated in the high-egg-production (HEP) ducks and low-egg-production (LEP) ducks. Several genes involved in the regulation of ovarian development, including neuropeptide Y (NPY), cell cycle protein-dependent kinase 1 (CDK1), and transcription factor 1 (E2F1), exhibited significant differential expressions at varying stages of egg production. Pathway functional analysis revealed that the DEGs were primarily associated with the steroid biosynthesis pathway, and the neuroactive ligand-receptor interaction pathway exhibited higher activity in the HEP group compared to the LEP group. This study offers valuable information about and novel insights into high egg production.


Assuntos
Ovário , Transcriptoma , Animais , Feminino , Ovário/metabolismo , Transcriptoma/genética , Patos/genética , Patos/metabolismo , Perfilação da Expressão Gênica , Oviposição
3.
Poult Sci ; 103(4): 103530, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417328

RESUMO

In order to explore the difference and its underlying mechanism between young and older ducks, 60-day-old (D60) and 300-day-old (D300) of young ducks and 900-day-old ducks (D900) of older ducks were selected and studied. HE staining indicated that breast muscle fibers in the D900 group were more inseparable than D60 and D300 groups and the greater redness were showed in D300 and D900 groups. Quantitative proteomic analyses were conducted to further identify differences between young and older ducks that 61 proteins overlapped in the comparative analysis of the D900 vs. D60 and D900 vs. D300 groups. Furthermore, metabolomics analysis from the D900 group showed marked differences from the results of the D60 and D300 groups in 31 unique metabolites. In particular, lower guanosine, hypoxanthine, guanine, and doxefazepam levels indicated the increased nutritional value of older ducks. Integrated proteomics and metabolomics analysis showed that purine metabolism was specifically enriched, indicating that NME3, RRM2B, AMPD1, and AMPD3 might mainly affect meat from older ducks. In conclusion, our results indicated that meat from 900-day-old ducks possessed a unique biochemical signature that could provide candidate biomarkers to distinguish young ducks from older ducks.


Assuntos
Patos , Proteômica , Animais , Patos/metabolismo , Galinhas , Proteínas/metabolismo , Carne/análise
4.
Food Chem X ; 20: 100899, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38144818

RESUMO

In order to explore the characteristic aroma flavor and its formation mechanism of old ducks, two ages (30 days and 60 days) of young ducks and three ages of old ducks (300 days, 900 days, and 1500 days) were selected and studied. An electronic nose was applied to evaluate the overall aroma flavor, and the result showed significant differences between the five duck samples. By gas chromatography-mass spectrometry (GC-MS), forty-eight volatile flavor compounds were detected, including seven aldehydes, six esters, five alcohols, five nitrogen compounds, twenty-one hydrocarbons, and four others. Among these compounds, twelve components, such as hexanal and dimethyl anthranilate, were considered as the characteristic flavor compounds along with duck aging. Furthermore, correlation analysis indicated that meat's unsaturated free fatty acids, especially linoleic acid (C18:2), were responsible for the duck's characteristic flavor formation. These data contribute to the flavor research and identification of old ducks.

5.
Food Res Int ; 174(Pt 2): 113679, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37981371

RESUMO

The present study aimed to examine the impact of lactic acid bacteria- fermented feed (FF) on the taste and quality of duck meat, in addition to elucidating the potential metabolomic mechanism at play. The findings revealed that ducks fed with FF exhibited elevated pH levels and reduced cooking loss in their meat when compared to the control group. In addition, the sensory evaluation and e-tongue analysis revealed that the tenderness, juiciness, umami, richness, saltiness, and sweetness of duck meat were all enhanced by feeding FF. Moreover, an examination of the metabolome using 1H nuclear magnetic resonance (1H NMR) identified the principal differential metabolites that exhibited a correlation with taste, which included 2-aminoadipate, glucose, glycine, N-acetylcysteine, niacinamide, proline, and threonine. Furthermore, the differential metabolites that exhibited the greatest enrichment in duck meat could be primarily traced to glutathione metabolism, glycine, serine and threonine metabolism, taurine and hypotaurine metabolism. The potential factors contributing to the effect of FF and basic commercial duck feed (CF) were found to be primarily regulated via the aforementioned metabolic pathways. The study, therefore, offers a viable approach for enhancing the taste and quality of duck meat.


Assuntos
Patos , Paladar , Animais , Patos/metabolismo , Carne/análise , Glicina , Treonina/metabolismo
6.
Foods ; 12(5)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36900498

RESUMO

Food-derived colloidal nanoparticles (CNPs) have been found in many food cooking processes, and their specific effects on human health need to be further explored. Here, we report on the successful isolation of CNPs from duck soup. The hydrodynamic diameters of the obtained CNPs were 255.23 ± 12.77 nm, which comprised lipids (51.2%), protein (30.8%), and carbohydrates (7.9%). As indicated by the tests of free radical scavenging and ferric reducing capacities, the CNPs possessed remarkable antioxidant activity. Macrophages and enterocytes are essential for intestinal homeostasis. Therefore, RAW 264.7 and Caco-2 were applied to establish an oxidative stress model to investigate the antioxidant characteristics of the CNPs. The results showed that the CNPs from duck soup could be engulfed by these two cell lines, and could significantly alleviate 2,2'-Azobis(2-methylpropionamidine) dihydrochloride (AAPH)-induced oxidative damage. It indicates that the intake of duck soup is beneficial for intestinal health. These data contribute to revealing the underlying functional mechanism of Chinese traditional duck soup and the development of food-derived functional components.

7.
Genes (Basel) ; 13(12)2022 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-36553486

RESUMO

The objective of this study was to investigate the effects of tributyrin supplementation on liver fat metabolism in broiler chickens. Two hundred and forty broilers were randomly allocated into two experimental groups (6 replicates per treatment; 20 chickens in each replicate): the control group (CN), which received a basal diet, and the tributyrin group (TB), which received a basal diet supplemented with 1 g/kg of tributyrin. The experimental period lasted 37 days. The results showed that in the liver, broilers supplemented with tributyrin had higher content of high-density lipoprotein cholesterol (HDL-C) (p < 0.05). Liver hepatic lipase (HL), lipoprotein lipase (LPL) and total lipid (TL) activity were significantly lower than in the TB group than that in the NC group. Meanwhile, the diet supplemented with tributyrin had more lipid droplets than the NC group, whereas the TB and NC groups showed no histological abnormalities in the liver. Furthermore, the mRNA expression levels of peroxisome proliferators-activated receptor α (PPARα), proliferators-activated receptor γ (PPARγ), fatty acid synthase (FAS), LPL and adipose triglyceride lipase (ATGL) in the liver were significantly upregulated in the TB group (p < 0.05), while those of the long-chain acyl-CoA-synthetase 1 (ACSL1) mRNA between the TB group and the NC group were not different (p > 0.05). These findings indicated that the diet supplemented with tributyrin could increase fat deposition appropriately by promoting fat synthesis without causing liver tissue damage, which demonstrated that tributyrin can be considered a valid feed additive for broiler chickens.


Assuntos
Galinhas , Metabolismo dos Lipídeos , Animais , Galinhas/genética , Galinhas/metabolismo , Triglicerídeos/farmacologia , Triglicerídeos/metabolismo , Suplementos Nutricionais , Fígado/metabolismo , RNA Mensageiro/metabolismo , Expressão Gênica
8.
Front Microbiol ; 13: 928670, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910613

RESUMO

The aim of this study was to investigate the effects of different probiotic fermented feed (PFF) on ameliorating liver fat accumulation by modulating the gut microbiota. A total of 216, 120-day-old Shaoxing ducks were divided into three groups, including the control group (basal diet), or the basal diet supplemented with 25 or 35% PFF. The results of the animal experiment showed that supplementation with PFF markedly alleviated the formation of liver and abdominal lipid droplet and decreased the levels of serum triglyceride (TG) in Shaoxing ducks. 16s rDNA showed that PFF could modulate the composition of gut microbiota, in particular, modulating the ratio of Firmicutes to Bacteroidetes. Moreover, PFF restructures the gut microbiome by reducing the abundance of Ruminococcaceae, Lachnospiraceae, and Prevotellaceae in ducks. Additionally, liver transcriptome analysis indicated that the PFF supplementation significantly downregulated the mRNA expression of peroxisome proliferator-activated receptor gamma (PPARG), acyl-CoA desaturase (SCD), DBI, fatty acid synthase (FASN), ELOVL fatty acid elongase 2 (ELOVL2), ELOVL6, and hydroxysteroid 17-beta dehydrogenase (HSD17B12) and upregulated the mRNA expression of CPT1B, which was widely associated with lipid metabolism processes, such as fatty acid elongation, PPAR signaling pathway, and ether lipid metabolism. Correlation analysis indicates that the expression changes of liver metabolism-related genes by PFF are highly correlated with the Ruminococcaceae, Lachnospiraceae, and Prevotellaceae levels. These findings demonstrated that PFF supplementation modulates gut microbial composition to activate liver lipid metabolism-related genes, which results in less lipid deposition in ducks. These findings provide novel insights into the molecular mechanisms of dietary PFF underlying liver fat accumulation by regulating gut microbiota.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...