Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(11): e32422, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38933981

RESUMO

The modified coconut shell biochars (MCSBCs) were fabricated and their adsorptions for Pb(II) were evaluated, in which waste coconut shell was used as the raw material, both ZnCl2 and KMnO4 were applied as the inorganic modifiers. FT-IR spectra, TGA, SEM and BET techniques were utilized to characterize their properties. It was spotted that the thermal stability of UCSBC could arrive at 500 °C. The BET specific surface areas of both Zn- and Mn-modified MCSBCs (485.137, 476.734 m2/g) were highly decreased as compared with that of UCSBC (3528.78 m2/g). In contrast, the average pore diameters of both Zn- and Mn-modified MCSBCs (3.295, 3.803 nm) were smaller than that of UCSBC (3.814 nm). These findings reveal that the modification of CSBC didn't change its pore size. Their adsorptions for Pb(II) were performed and some controlling factors involving pH, contact time, starting concentration and temperature were explored. Moreover, the experiment data were fitted via linear and non-linear techniques. It was found that the Langmuir maximal adsorption amounts of un-modified coconut shell biochar (UCSBC), Zn-modified and Mn-modified MCSBCs for Pb(II) could reach 31.653, 86.547 and 93.666 mg/g, respectively. Two-parameter kinetic models exposed that Pb(II) adsorption on UCSBC, Zn-modified and Mn-modified MCSBCs obeyed both the Lagergren first-order (non-linear R2 = 0.990, 0.954, 0.953, respectively) and Avrami fractional-order (non-linear R2 = 0.989, 0.946, 0.945, respectively) kinetic models. Two-parameter and three-parameter isotherm models verified that Pb(II) adsorption on UCSBC, Zn-modified and Mn-modified MCSBCs followed the Langmuir (non-linear R2 = 0.992, 0.997, 0.993, respectively) as well as Sips (non-linear R2 = 0.992, 0.997, 0.992, respectively) isotherm models. The computation of thermodynamic parameters evidenced that the modification of UCSBC via KMnO4 and ZnCl2 can effectively rise its adsorption for Pb(II), exhibiting promising applications in the handling of metal-bearing water.

2.
Sci Rep ; 14(1): 8101, 2024 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582868

RESUMO

Our objective in this study is to determine whether intra-articular injection of miRNA-1 can attenuate the progression of OA in rats by down regulating Ihh. Knee chondrocytes were isolated from male Sprague-Dawley rats aged 2-3 days. Second-generation chondrocytes were transfected with miR-1 mimic and empty vector with lipo3000 for 6 h and then stimulated with 10 ng/mL IL-1ß for 24 h. OA-related and cartilage matrix genes were quantified using real-time quantitative polymerase chain reaction (RT-qPCR). Two-month-old male Sprague-Dawley rats were divided into three groups (n = 30?): sham operation group + 50 µL saline, anterior cruciate ligament transection (ACLT) group + 50 µL miR-1 agomir (concentration), and control group ACLT + 50 µL miR-1 agomir. Treatment was started one week after the operation. All animals were euthanized eight weeks after the operation. X-rays and micro-CT were used to detect imaging changes in the knee joints. FMT was used to monitor joint inflammation in vivo. Safranin O staining was used to detect morphological changes in articular cartilage. Immunohistochemistry was used to detect Col2, Col10, metalloproteinase-13 (MMP-13). RT-qPCR was used to detect gene changes includingmiR-1, Col2, Col10, MMP-13, Ihh, Smo, Gli1, Gli2, and Gli3. Overexpression of miR-1 in IL-1ß-stimulated chondrocytes reduced the levels of Ihh, MMP-13, and Col10 but increased the levels of Col2 and aggrecan. Intra-articular injection of miR-1 agomir reduced osteophyte formation, inflammation, and prevented cartilage damage. RT-qPCR results indicated that the miR-1 agomir increased articular cartilage anabolism and inhibited cartilage catabonism. miR-1 can attenuate the progression of OA by downregulating Ihh.


Assuntos
Cartilagem Articular , MicroRNAs , Osteoartrite , Ratos , Masculino , Animais , Proteínas Hedgehog , MicroRNAs/genética , MicroRNAs/uso terapêutico , Ratos Sprague-Dawley , Metaloproteinase 13 da Matriz/genética , Osteoartrite/tratamento farmacológico , Osteoartrite/genética , Condrócitos , Injeções Intra-Articulares , Inflamação , Modelos Animais de Doenças
3.
Mol Pharm ; 21(2): 760-769, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38175712

RESUMO

Acoustic kinetic therapy systems that target specific organelles can improve the precision of a sonosensitizer, which is a perfect combination of targeted therapy and sonodynamic therapy (SDT) and plays an important role in current acoustic kinetic therapy. In this study, we loaded PpIX, a sonosensitizer, on targeted-functional carbon dots (CDs) via an amide reaction and then generated the mitochondria-targeted system (Mit-CDs-PpIX) and nucleus-targeted system (Nuc-CDs-PpIX), respectively, to deliver the sonosensitizer. Both systems exhibited minimal cytotoxicity in the absence of ultrasound stimulation. The efficacy of the targeted SDT systems was investigated using methylthiazol tetrazolium (MTT) assays, live/dead staining, flow cytometry, etc. Compared with the free PpIX and mitochondria-targeted system, the nucleus-targeted system is more potent in killing effect under ultrasound stimulation and induces apoptosis with higher intensity. To achieve the equal killing effect, the effective concentration of Nuc-CDs-PpIX is just one third of that of Mit-CDs-PpIX.


Assuntos
Terapia por Ultrassom , Apoptose , Mitocôndrias , Espécies Reativas de Oxigênio , Linhagem Celular Tumoral
4.
Invest New Drugs ; 42(1): 1-13, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37971628

RESUMO

Advances in immune checkpoint inhibitors (ICIs) have enabled more effective treatment for individuals with various types of solid tumors. Given the improved survival benefit and acceptable safety profile of ICIs in advanced gastric cancer, there is plenty of interest in the use of ICIs in the neoadjuvant setting with curative intent. Theoretically, immunoneoadjuvant with ICIs could boost the levels of endogenous tumor antigen present in the tumor to enhance T-cell priming and further enhance systemic immunity. This systemic immune response may improve the detection and elimination of the disseminated micrometastatic tumors beyond the resected tumor, which are sources of postsurgical relapse. Numerous clinical studies have begun to explore the application of ICIs in neoadjuvant treatment of gastric cancer. This article reviews the progress in the use of ICI monotherapy and in combination with alternative therapies for the treatment of gastric cancer to aid in the development of gastric cancer immunoneoadjuvant therapy and improve the overall therapeutic benefit.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Inibidores de Checkpoint Imunológico/efeitos adversos , Terapia Neoadjuvante
5.
Brain Tumor Pathol ; 41(1): 18-29, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38100030

RESUMO

INTRODUCTION: Patients with histiocytic sarcoma occurring in the central nervous system (CNS) are rare and have a very poor prognosis. The increased use of molecular diagnostic approaches in solid tumors has brought more opportunities for the diagnosis and treatment of central nervous system histiocytic sarcoma (CNSHS). CASE DESCRIPTION: A 9-year-old girl was admitted to the hospital with pain in her head and neck, as well as vomiting. Imaging scans showed a prominent abnormality in the anterior falciform region, and histopathology revealed the presence of CD68 (+) and CD163 (+) cells, leading to a preliminary diagnosis of primary intracerebral CNSHS. Molecular profiling tests identified a new variant of ARHGAP45::BRAF fusion in this case, which has not been reported in any other tumor. The patient underwent surgical removal of the tumor and will require long-term monitoring. CONCLUSION: The presence of the BRAF point mutation, predominantly BRAF p.V600E, has been documented in prior literature of CNSHS. This is the first case of pediatric histiocytic sarcoma in the anterior falciform region who has a unique ARHGAP45::BRAF fusion. The findings of our study indicate that a broader range of molecular assays should be employed in the diagnosis of CNSHS and opens up new possibilities for the treatment of the patient.


Assuntos
Neoplasias Encefálicas , Neoplasias do Sistema Nervoso Central , Sarcoma Histiocítico , Feminino , Humanos , Criança , Sarcoma Histiocítico/diagnóstico , Sarcoma Histiocítico/genética , Sarcoma Histiocítico/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Sistema Nervoso Central/patologia
6.
Future Oncol ; 19(36): 2395-2403, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37990937

RESUMO

At present, preoperative chemotherapy is the standard of care for the neoadjuvant treatment of potentially resectable gastric cancer (GC). However, because the efficacy and prognosis are not ideal, curative effects for this population are unsatisfactory. With the development of immune checkpoint inhibitors, the results of a few encouraging early trials of immunotherapeutic agents as neoadjuvant therapies for resectable GC have been reported. However, markers of the efficacy of immune checkpoint inhibitors remain unclear. This prospective single-center, single-arm observational study was designed to evaluate the efficacy of sintilimab plus the fluorouracil, leucovorin, oxaliplatin and docetaxel regimen as a neoadjuvant treatment for localized GC. More importantly, this work assesses multiple dimensions and include ctDNA, the immune microenvironment and intestinal microbiome to explore correlations between biomarkers and neoadjuvant therapeutic efficacy. Clinical trial registration: ChiCTR2200061629 (www.chictr.org.cn/index.aspx).


Assuntos
Neoplasias Gástricas , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Biomarcadores , Docetaxel/uso terapêutico , Fluoruracila/uso terapêutico , Inibidores de Checkpoint Imunológico/uso terapêutico , Leucovorina/uso terapêutico , Terapia Neoadjuvante/métodos , Oxaliplatina/uso terapêutico , Estudos Prospectivos , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/tratamento farmacológico , Microambiente Tumoral
7.
Invest New Drugs ; 41(6): 861-869, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37864727

RESUMO

Globally, gastrointestinal cancer is the most widespread neoplastic disease and the primary contributor to cancer-associated fatalities. Gastrointestinal signet ring cell carcinoma (SRCC) exhibits unique distinguishing features in several aspects when compared to adenocarcinomas (ACs). The scarcity of signet ring cell carcinoma has resulted in a heightened significance of related clinical and molecular investigations. However, a comprehensive and systematic review of the clinical, molecular, therapeutic, and research aspects of this disease is currently absent. This review provides an overview of the latest developments in our understanding of the clinical and molecular features of gastrointestinal signet ring cell carcinoma (SRCC). Additionally, we have compiled a list of potential therapeutic targets or biomarkers, as well as an examination of the current treatment options and the possible mechanisms of formation.


Assuntos
Adenocarcinoma , Carcinoma de Células em Anel de Sinete , Neoplasias Gastrointestinais , Humanos , Neoplasias Gastrointestinais/terapia , Carcinoma de Células em Anel de Sinete/diagnóstico , Carcinoma de Células em Anel de Sinete/patologia , Biomarcadores
8.
Water Sci Technol ; 88(7): 1795-1820, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37830997

RESUMO

The impact of Ba-modified peanut shell biochar (Ba-PSB) on Pb(II) removal was studied and BaCl2 was used as a modifier. It was shown that the PSB obtained at 750 °C had the best adsorption effect, and the Ba-PSB had a larger specific surface area and a good adsorption effect on Pb(II). At pH = 5, concentration was 400 mg/L, time was 14 h, and temperature was 55 °C, the loading amount of black peanut shell biochar (BPSB), red peanut shell biochar (RPSB), Ba-BPSB, and Ba-RPSB reached 128.050, 98.217, 379.330, and 364.910 mg/g, respectively. In addition, based on the non-linear fitting, it was found that the quasi-second-order kinetic model, and isothermal model could be applied to describe Pb(II) adsorption on PSB and Ba-PSB. The adsorption behavior of PSB unmodified and modified was a spontaneous process. Moreover, chemical modification of BPSB, RPSB, Ba-BPSB, and Ba-RPSB for hindering of -COOH and -OH groups revealed 81.81, 77.08, 86.90, and 83.65% removal of Pb(II), respectively, which was due to the participation of -COOH, while 17.61, 21.70, 12.77, and 15.06% was from -OH group, respectively. The increase of cation strength (Na+, K+, Ca2+, and Mg2+) will reduce the adsorption capacity of PSB for Pb(II).


Assuntos
Arachis , Poluentes Químicos da Água , Chumbo , Adsorção , Água , Carvão Vegetal , Poluentes Químicos da Água/análise , Cinética
9.
Biotechnol Bioeng ; 120(10): 2853-2864, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37227037

RESUMO

Currently, there is a lack of suitable models for in-vitro studies of malignant melanoma and traditional single cell culture models no longer reproduce tumor structure and physiological complexity well. The tumor microenvironment is closely related to carcinogenesis and it is particularly important to understand how tumor cells interact and communicate with surrounding nonmalignant cells. Three-dimensional (3D) in vitro multicellular culture models can better simulate the tumor microenvironment due to their excellent physicochemical properties. In this study, 3D composite hydrogel scaffolds were prepared from gelatin methacrylate and polyethylene glycol diacrylate hydrogels by 3D printing and light curing techniques, and 3D multicellular in vitro tumor culture models were established by inoculating human melanoma cells (A375) and human fibroblasts cells on them. The cell proliferation, migration, invasion, and drug resistance of the 3D multicellular in vitro model was evaluated. Compared with the single-cell model, the cells in the multicellular model had higher proliferation activity and migration ability, and were easy to form dense structures. Several tumor cell markers, such as matrix metalloproteinase-9 (MMP-9), MMP-2, and vascular endothelial growth factor, were highly expressed in the multicellular culture model, which were more favorable for tumor development. In addition, higher cell survival rate was observed after exposure to luteolin. The anticancer drug resistance result of the malignant melanoma cells in the 3D bioprinted construct demonstrated physiological properties, suggesting the promising potential of current 3D printed tumor model in the development of personalized therapy, especially for discovery of more conducive targeted drugs.


Assuntos
Bioimpressão , Melanoma , Humanos , Fator A de Crescimento do Endotélio Vascular , Proliferação de Células , Técnicas de Cultura de Células , Impressão Tridimensional , Hidrogéis/química , Bioimpressão/métodos , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Microambiente Tumoral
11.
Toxins (Basel) ; 14(12)2022 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-36548749

RESUMO

Spodoptera frugiperda (fall armyworm, FAW) is one of the most devastating insect pests to corn and soybean production in the Americas and is rapidly expanding its range worldwide. It is known to be hard to control either by chemical insecticide applications or by GM. Although the use of GM traits can be an effective way to control this pest, it is very rare to find native insecticidal proteins that provide the necessary level of FAW control in crop fields where FAW pressure and damage are high. Insecticidal Cry proteins sourced from Bacillus thuringiensis have been heavily utilized in the development of crops with GM traits; however, it is increasingly difficult to identify Cry proteins with unique modes of action. Protein engineering via a phylogenetically guided Cry protein domain swapping approach enabled us to discover novel chimeric Cry proteins engineered from inactive parent sequences. Some of these chimeras show excellent efficacy against key biotypes of FAW from Brazil and North America. In this study, we characterized a Cry-based chimera eCry1Gb.1Ig that is a very potent FAW toxin. eCry1Gb.1Ig showed high efficacy against multiple FAW strains that are resistant to various traits, including Cry1Fa, Vip3Aa and Cry1A.105/Cry2Ab. These results clearly indicate that the FAW strains resistant to Cry1Fa, Vip3Aa or Cry1A.105/Cry2Ab demonstrate no cross-resistance to eCry1Gb.1Ig and strongly suggest that eCry1Gb.1Ig acts through a novel mode of action compared to the existing traits. In addition to its FAW activity, eCry1Gb.1Ig has also been shown to control Chrysodeixis includens (soybean looper, SBL) and Anticarsia gemmatalis (velvetbean caterpillar, VBC), which are significant pests of soybean. When eCry1Gb.1Ig was introduced into corn and soybean crops, transgenic events showed strong efficacy against FAW, SBL and VBC, but no adverse plant phenotypes. This suggests that the in planta expression of the eCry1Gb.1Ig protein does not compromise plant growth or reproduction and can protect plants from FAW-related damage. Therefore, this valuable discovery will provide a differentiating FAW control trait that will give growers another tool to help them reduce yield loss due to FAW.


Assuntos
Bacillus thuringiensis , Inseticidas , Mariposas , Animais , Spodoptera , Endotoxinas/genética , Endotoxinas/farmacologia , Endotoxinas/metabolismo , Toxinas de Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Proteínas de Bactérias/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacologia , Proteínas Hemolisinas/metabolismo , Mariposas/genética , Inseticidas/farmacologia , Inseticidas/metabolismo , Bacillus thuringiensis/genética , Produtos Agrícolas/metabolismo , Zea mays/genética , Zea mays/metabolismo , Glycine max/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
12.
Eur J Med Res ; 27(1): 225, 2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36309740

RESUMO

Immune checkpoint inhibitors (ICIs) therapy elicits admirable anti-tumor responses across many types of cancer. Growing evidence point to a link to Mediator complex subunit 12 (MED12) and DNA damage repair (DDR) and TGF-ß signing, while the clinical data on the association of MED12 and ICIs response are lacking. In this study, clinical and whole-exome sequencing (WES) data from published studies were merged as a WES cohort to explore the association between MED12 mutation (MED12-Mut) and ICIs efficiency across cancers. Then, Memorial Sloan Kettering Cancer Center (MSKCC) cohort was used for validating our findings. The Cancer Genome Atlas (TCGA) cohort was used to perform anti-tumor immunity and prognosis analysis. In the WES cohort (n = 474), significant differences were detected between MED12-Mut and MED12-wildtype (MED12-Wt) patients regarding durable clinical benefit (DCB, 80.00% vs. 53.67%, P = 0.022). In addition, significantly prolonged PFS was observed in MED12-Mut patients (mPFS: not reached, NR vs. 5.87 months, HR: 0.38, 95% CI 0.17-0.85, log-rank P = 0.015), After taking into account age, gender, metastasis, treatment and TMB status, the result of multivariable Cox proportional hazards regression showed significantly better PFS (HR:0.40, 95% CI 0.18-0.92; P = 0.031). In the MSKCC cohort (n = 1513), overall survival advantage was achieved in MED12-Mut patients (mOS: 41 vs. 19 months, HR:0.54, 95%CI 0.34-0.85; log-rank P = 0.007), after taking into account same factors in WES cohort, this link still existed (HR: 0.60, 95% CI: 0.38-0.96, P = 0.033), Notably, TMB was also found significantly higher in MED12-Mut patients in both WES and MSKCC cohort. Further tumor-infiltrating lymphocytes and DDR-related gene analysis revealed anti-tumor immunity in MED12-Mut patients. Totally, MED12-Mut successfully predicted better clinical outcomes in ICIs-treated pan-cancer cohort, indicating that MED12-Mut could serve as a potential predictive biomarker for immune checkpoint inhibitors in pan-cancer.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Biomarcadores Tumorais/genética , Mutação/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Fatores de Transcrição/genética , Complexo Mediador/genética
13.
Bone ; 165: 116566, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36152943

RESUMO

Endochondral bone formation from the growth plate plays a critical role in vertebrate limb development and skeletal homeostasis. Although miR-1 is mainly expressed in the hypertrophic region of the growth plate during this process, its role in the endochondral bone formation is unknown. To elucidate the role of miR-1 in cartilage development, chondrocyte-specific transgenic mice with high expression of miR-1 were generated (Col2a1-Cre-ERT2-GFPfl/fl-RFP-miR-1). Transgenic mice showed short limbs and delayed formation of secondary ossification centers. In the tibia growth plate of miR-1-overexpressing transgenic mice, the chondrocytes in the proliferative zone were disorganized and their proliferation decreased, and the ColX, MMP-13 and Indian Hedgehog (IHH) in chondrocytes showed a downward trend, resulting in decreased terminal differentiation in the hypertrophic zone. In addition, the apoptosis index caspase-3 also showed a downward trend in the tibia growth plate. It was concluded that miR-1 overexpression affects chondrocyte proliferation, hypertrophic differentiation, and apoptosis, thereby delaying the formation of secondary ossification centers and leading to short limbs. It was also verified that miR-1 affects endochondral ossification through the IHH pathway. The above results suggest that miR-1 overexpression can affect endochondral osteogenesis by inhibiting chondrocyte proliferation, hypertrophic differentiation, and apoptosis, thus causing limb hypoplasia in mice. This work gives potential for new therapeutic directions and insights for the treatment of dwarf-related diseases.


Assuntos
MicroRNAs , Osteogênese , Camundongos , Animais , Osteogênese/genética , Condrócitos/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Camundongos Transgênicos , Metaloproteinase 13 da Matriz/metabolismo , Caspase 3/metabolismo , Hipertrofia , Proliferação de Células/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Diferenciação Celular
14.
Front Immunol ; 13: 894110, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967450

RESUMO

Background: NRAS wildtype melanoma accounts for approximately 80% of melanomas. Previous studies have shown that NRAS wildtype melanoma had higher response rates and better prognoses than NRAS-mutant patients following immunotherapy, while as major actors in tumor cells and tumor microenvironment (TME), the association between NOTCH family genes and response to immunotherapy in NRAS wildtype melanoma remains indistinct. Objective: We aim to explore whether NOTCH family gene variation is associated with genomic factors in immune checkpoint inhibitor (ICI) response in NRAS wildtype melanoma and with clinical results in these patients. Method: This research used genomic data of 265 NRAS wildtype ICI-pretreatment samples from five ICI-treated melanoma cohorts to analyze the relationship between NOTCH family gene mutation and the efficacy of ICI therapy. Results: NRAS wildtype melanomas with NOTCH4-Mut were identified to be associated with prolonged overall survival (OS) in both the discovery (HR: 0.30, 95% CI: 0.11-0.83, P = 0.01) and validation cohorts(HR: 0.21, 95% CI: 0.07-0.68, P = 0.003). Moreover, NOTCH4-Mut melanoma had a superior clinical response in the discovery cohort (ORR, 40.0% vs 13.11%, P = 0.057) and validation cohort (ORR, 68.75% vs 30.07%, P = 0.004). Further exploration found that NOTCH4-Mut tumors had higher tumor mutation burden (TMB) and tumor neoantigen burden (TNB) (P <0.05). NOTCH4-Mut tumors had a significantly increased mutation in the DNA damage response (DDR) pathway. Gene set enrichment analysis revealed NOTCH4-Mut tumor enhanced anti-tumor immunity. Conclusion: NOTCH4 mutation may promote tumor immunity and serve as a biomarker to predict good immune response in NRAS wildtype melanoma and guide immunotherapeutic responsiveness.


Assuntos
GTP Fosfo-Hidrolases , Melanoma , Proteínas de Membrana , Receptor Notch4 , Biomarcadores , GTP Fosfo-Hidrolases/genética , Humanos , Fatores Imunológicos/uso terapêutico , Imunoterapia/métodos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/terapia , Proteínas de Membrana/genética , Mutação , Receptor Notch4/genética , Microambiente Tumoral/genética
16.
J Proteome Res ; 21(9): 2160-2172, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35926154

RESUMO

Gastric cancer is one of the cancers with the highest morbidity and mortality. Although several therapeutic approaches have been developed to treat this disease, the overall survival rate is still very low due to metastasis, drug resistance, and so forth. Therefore, it is necessary to discover new regulatory molecules and signaling pathways that modulate the metastasis of gastric cancer cells. A Disintegrin And Metalloprotease 12 (ADAM12) was highly expressed in gastric cancer tissues and presented in the patient urine. However, it is unclear whether and how ADAM12 regulates the migration of gastric cancer cells. In this work, we used the secretome protein enrichment with click sugars (SPECS) method to purify the secreted glycosylated proteins and performed quantitative proteomics to identify the secreted proteins that were differentially regulated by ADAM12S, the short and secreted form of ADAM12. Our proteomic and biochemical analyses revealed that ADAM12S upregulated the cell surface glycoprotein CD146, a cell adhesion molecule and melanoma marker, which was dependent on the catalytic residue of ADAM12S. Furthermore, we discovered that the ADAM12S-enhanced migration of gastric cancer cells was, at least partially, mediated by CD146. This work may help to evaluate whether ADAM12 could be a potential therapeutic target for the treatment of gastric cancer patients.


Assuntos
Proteômica , Neoplasias Gástricas , Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Proteína ADAM12/genética , Antígeno CD146 , Humanos , Proteínas de Membrana/metabolismo , Proteômica/métodos , Neoplasias Gástricas/genética
17.
Cell Prolif ; 55(9): e13283, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35811392

RESUMO

BACKGROUND: Pappalysin 2 (PAPPA2) mutation, occurring most frequently in skin cutaneous melanoma (SKCM) and non-small cell lung cancer (NSCLC), is found to be related to anti-tumour immune response. However, the association between PAPPA2 and the efficacy of immune checkpoint inhibitors (ICIs) therapy remains unknown. METHODS: To analyse the performance of PAPPA2 mutation as an indicator stratifying beneficiaries of ICIs, seven public cohorts with whole-exome sequencing (WES) data were divided into the NSCLC set (n = 165) and the SKCM set (n = 210). For further validation, 41 NSCLC patients receiving anti-PD-(L)1 treatment were enrolled in China cohort (n = 41). The mechanism was explored based on The Cancer Genome Atlas database (n = 1467). RESULTS: In the NSCLC set, patients with PAPPA2 mutation (PAPPA2-Mut) demonstrated a significantly superior progress free survival (PFS, hazard ratio [HR], 0.28 [95% CI, 0.14-0.53]; p < 0.001) and objective response rate (ORR, 77.8% vs. 23.2%; p < 0.001) compared to those with wide-type PAPPA2 (PAPPA2-WT), consistent in the SKCM set (overall survival, HR, 0.49 [95% CI: 0.31-0.78], p < 0.001; ORR, 34.1% vs. 16.9%, p = 0.039) and China cohort. Similar results were observed in multivariable models. Accordingly, PAPPA2 mutation exhibited superior performance in predicting ICIs efficacy compared with other published ICIs-related gene mutations, such as EPHA family, MUC16, LRP1B and TTN, etc. In addition, combined utilization of PAPPA2 mutation and tumour mutational burden (TMB) could expand the identification of potential responders to ICIs therapy in both NSCLC set (HR, 0.36 [95% CI: 0.23-0.57], p < 0.001) and SKCM set (HR, 0.51 [95% CI: 0.34-0.76], p < 0.001). Moreover, PAPPA2 mutation was correlated with enhanced anti-tumour immunity including higher activated CD4 memory T cells level, lower Treg cells level, and upregulated DNA damage repair pathways. CONCLUSIONS: Our findings indicated that PAPPA2 mutation could serve as a novel indicator to stratify beneficiaries from ICIs therapy in NSCLC and SKCM, warranting further prospective studies.


Assuntos
Antineoplásicos Imunológicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Melanoma , Neoplasias Cutâneas , Antineoplásicos Imunológicos/uso terapêutico , Antígeno B7-H1/genética , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Melanoma/tratamento farmacológico , Melanoma/genética , Mutação/genética , Proteína Plasmática A Associada à Gravidez/genética , Estudos Prospectivos , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Melanoma Maligno Cutâneo
18.
Biomed Opt Express ; 13(6): 3493-3502, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35781975

RESUMO

Superparamagnetic nanoparticles have been widely used as contrast agents in magnetic resonance imaging (MRI). The combined use of multiple imaging modes can provide more accurate information for clinical diagnosis. In this paper, a MRI/fluorescence dual-mode imaging contrast agent was developed by a simple method. The method is to make the fluorescent carbon quantum dots (CDs) adsorbed on the surface of the magnetic composite with pore structure by ultrasonic dispersion. Replacing the traditional methods such as chemical bonding, the fluorescent material is coated on the surface of the composite material. The synthesized composite materials were characterized by the transmission electron microscopy method (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and vibration sample magnetometer (VSM). The results of TEM, FTIR and XPS showed that CDs were successfully coated on the surface of C60@Fe3O4 magnetic composite. The VSM results show that the composite material still maintains superparamagnetism. The cytotoxicity of the material on SMMC-7721 liver cancer cells was detected by the MTT method, and the biocompatibility of the material was verified. By observing the fluorescence distribution in the cell, it is proved that the composite material successfully enters the cell and produces fluorescence. Finally, through the analysis of T2-weighted imaging, it is found that the addition of materials results in an enhanced dark contrast compared to control cells. Therefore, the composite nanomaterials synthesized in this paper can be used as MRI/fluorescence dual-mode imaging contrast agents.

19.
Indian J Orthop ; 56(7): 1206-1216, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35813535

RESUMO

Background: Tremendous progress has been made in the field of cartilage repair and regeneration, particularly with tissue-engineering approaches. This study aims to estimate the global status and current trends in the field of cartilage tissue engineering. Methods: Publications from 2011 to 2020 on tissue engineering for cartilage repair and regeneration were retrieved from Web of Science Core Collection database. The source data were statistically evaluated based on the bibliometrics. In terms of visualized analysis, some bibliometric indicators such as bibliographic coupling, co-citation, co-authorship and co-occurrence analysis were performed by VOSviewer software, to investigate the research trends in tissue engineering for cartilage repair and regeneration. Results: In total, 3715 papers were included. Since 2011, the amount of issued papers and relative research interest (RRI) have grown by leaps and bounds globally. The United States was the biggest contributor to the research in this field, due to the greatest citation frequency, the highest H index and the strongest total link strength. Romania had the highest average citation for each. The journal Tissue Engineering Part A published most articles in this field. For institutions, the largest contributors were Shanghai Jiaotong University, University of California System and Sichuan University. Studies could all be grouped into four main clusters: study of biomaterial scaffolds, study of seeding cells and growth factors, experimental animal model and clinical study, and mechanism research. Conclusion: Great efforts should be put into the study of biomaterial scaffolds, seeding cells and growth factors, considered to be the next hot topics in cartilage tissue engineering. This findings provide collaborative insights and research orientation for academic researchers, surgeons and healthcare practitioners to a certain extent. Supplementary Information: The online version contains supplementary material available at 10.1007/s43465-021-00569-1.

20.
Int J Chron Obstruct Pulmon Dis ; 17: 1601-1612, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860812

RESUMO

Introduction: Chronic obstructive pulmonary disease (COPD) and lung cancer often coexist, but its pathophysiology and genomics features are still unclear. Methods: In this study, we retrospectively collected lung cancer concomitant COPD (COPD-LC) and non-COPD lung cancer (non-COPD-LC) patients, who performed next generation sequencing (NGS) and had clinicopathological information simultaneously. The COPD-LC data from the TCGA cohort were collected to conduct further analysis. Results: A total of 51 COPD-LC patients and 88 non-COPD-LC patients were included in the study. Clinicopathological analysis showed that proportion of male gender, older age, and smoking patients were all substantially higher in COPD-LC group than in non-COPD-LC group (all P<0.01). Comparing the genomic data of the two groups in our cohort, COPD-LC had higher mutation frequency of LRP1B (43% vs 9%, P = 0.001), EPHA5 (24% vs 1%, P = 0.002), PRKDC (14% vs 1%, P = 0.039), PREX2 (14% vs 0%, P = 0.012), and FAT1 (14% vs 0%, P = 0.012), which had a relationship with improved tumor immunity. Immunotherapy biomarker of PD-L1 positive expression (62.5% vs 52.0%, P = 0.397) and tumor mutation burden (TMB, median TMB: 7.09 vs 2.94, P = 0.004) also were higher in COPD-LC. In addition, RNA data from TCGA further indicated tumor immunity increased in COPD-LC. Whereas, COPD-LC had lower frequency of EGFR mutation (19% vs 50%, P = 0.013) and EGFR mutant COPD-LC treated with EGFR-TKI had worse progression-free survival (PFS) (HR = 3.52, 95% CI: 1.27-9.80, P = 0.01). Conclusion: In this retrospective study, we first explored molecular features of COPD-LC in a Chinese population. Although COPD-LC had lower EGFR mutant frequency and worse PFS with target treatment, high PD-L1 expression and TMB indicated these patients may benefit from immunotherapy.


Assuntos
Neoplasias Pulmonares , Doença Pulmonar Obstrutiva Crônica , Antígeno B7-H1/genética , Biomarcadores Tumorais/genética , Receptores ErbB/genética , Humanos , Masculino , Mutação , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/genética , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...