Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosensors (Basel) ; 13(6)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37367021

RESUMO

In recent years, flexible pressure sensing arrays applied in medical monitoring, human-machine interaction, and the Internet of Things have received a lot of attention for their excellent performance. Epidermal sensing arrays can enable the sensing of physiological information, pressure, and other information such as haptics, providing new avenues for the development of wearable devices. This paper reviews the recent research progress on epidermal flexible pressure sensing arrays. Firstly, the fantastic performance materials currently used to prepare flexible pressure sensing arrays are outlined in terms of substrate layer, electrode layer, and sensitive layer. In addition, the general fabrication processes of the materials are summarized, including three-dimensional (3D) printing, screen printing, and laser engraving. Subsequently, the electrode layer structures and sensitive layer microstructures used to further improve the performance design of sensing arrays are discussed based on the limitations of the materials. Furthermore, we present recent advances in the application of fantastic-performance epidermal flexible pressure sensing arrays and their integration with back-end circuits. Finally, the potential challenges and development prospects of flexible pressure sensing arrays are discussed in a comprehensive manner.


Assuntos
Epiderme , Dispositivos Eletrônicos Vestíveis , Humanos , Eletrodos , Impressão , Impressão Tridimensional
2.
Microsyst Nanoeng ; 9: 68, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37251710

RESUMO

Recently, flexible iontronic pressure sensors (FIPSs) with higher sensitivities and wider sensing ranges than conventional capacitive sensors have been widely investigated. Due to the difficulty of fabricating the nanostructures that are commonly used on electrodes and ionic layers by screen printing techniques, strategies for fabricating such devices using these techniques to drive their mass production have rarely been reported. Herein, for the first time, we employed a 2-dimensional (2D) hexagonal boron nitride (h-BN) as both an additive and an ionic liquid reservoir in an ionic film, making the sensor printable and significantly improving its sensitivity and sensing range through screen printing. The engineered sensor exhibited high sensitivity (Smin> 261.4 kPa-1) and a broad sensing range (0.05-450 kPa), and it was capable of stable operation at a high pressure (400 kPa) for more than 5000 cycles. In addition, the integrated sensor array system allowed accurate monitoring of wrist pressure and showed great potential for health care systems. We believe that using h-BN as an additive in an ionic material for screen-printed FIPS could greatly inspire research on 2D materials for similar systems and other types of sensors. Hexagonal boron nitride (h-BN) was employed for the first time to make iontronic pressure sensor arrays with high sensitivity and a broad sensing range by screen printing.

3.
Rev Sci Instrum ; 94(5)2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37212645

RESUMO

Periodically tunable nano-gratings have an irreplaceable role in spectral scanning and optical communication, but the performance of gratings manufactured from different materials varies considerably, and the development of superior materials has energized the preparation of high-precision devices. This paper presents a nanoscale preparation process based on Norland Optical Adhesive 73 (NOA73), which enables the rapid preparation of periodically tunable nano-gratings with up to 100% light transmission. The powerful fluidity and shear rate of NOA73 make it uniquely suited to the preparation of precision devices, allowing the production of up to dense grating structures and offering the possibility of making nanoscale gratings. This paper uses multi-angle hierarchical lithography, die stretching, and replication to achieve further improvements in accuracy and successfully prepare gratings with a period of 500 nm. The successful preparation of NOA73 nano-gratings demonstrates the practicality of NOA73 as a material for precision device fabrication.

4.
Micromachines (Basel) ; 13(9)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36144011

RESUMO

Radial artery pulse pressure contains abundant cardiovascular physiological and pathological information, which plays an important role in clinical diagnosis of traditional Chinese medical science. However, many photoelectric sensors and pressure sensors will lose a large number of waveform features in monitoring pulse, which will make it difficult for doctors to precisely evaluate the patients' health. In this letter, we proposed an on-skin flexible pressure sensor for monitoring radial artery pulse. The sensor consists of the MXene (Ti3C2Tx)-coated nonwoven fabrics (n-WFs) sensitive layer and laser-engraved interdigital copper electrodes. Benefiting from substantially increased conductive paths between fibers and electrodes during normal compression, the sensor obtains high sensitivity (3.187 kPa-1), fast response time (15 ms), low detection limit (11.1 Pa), and long-term durability (20,000 cycles). Furthermore, a flexible processing circuit was connected with the sensor mounted on wrist radial artery, achieving wirelessly precise monitoring of the pulse on smart phones in real time. Compared with the commercial flexible pressure sensor, our sensor successfully captures weak systolic peak precisely, showing its great clinical potential and commercial value.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...