Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem X ; 20: 100963, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38144843

RESUMO

Carbon dots (CDs), a novel type of nanomaterial, play crucial roles in the agriculture field. However, it remains unclear their impacts on the flavor quality of vegetables. The present study synthesized a novel chitooligosaccharide-peanut oligopeptide-carbon dots (COS-POP-CDs) material through the chitooligosaccharide (COS) and peanut oligopeptide (POP) high temperature Maillard reactions and studied its effect on the flavor quality of Chinese cabbage (Choy sum). Results indicated that COS-POP-CDs emit blue visible light that readily absorbed by chloroplasts, while also demonstrating some degree of antibacterial and antioxidant activities. After transplanting of Choy sum, foliar spraying 0.12 mg/mL COS-POP-CDs twice can increase the content of soluble proteins, Vitamin C, and enhance the strawberry and spicy flavors of Choy Sum. After harvest of Choy Sum, foliar spraying 0.12 mg/mL COS-POP-CDs once can slow down the spoilage. These results suggest that COS-POP-CDs have significant potential to improve crop quality.

2.
Food Chem X ; 19: 100770, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37780329

RESUMO

Herein, four chitooligosaccharide derivatives (COS-RA, COS-FA, COS-VA, COS-GA) were prepared by laccase-catalyzed chitooligosaccharide modification with rosmarinic acid (RA), ferulic acid (FA), gallic acid (GA), and vanillic acid (VA), and structures were characterized. RA and FA resulted in higher amino-substitution in the chitooligosaccharides than GA and VA. COS-RA and COS-FA had greater DPPH scavenging rates than COS-GA and COS-VA. Compared with COS treatment, spraying 250 mg L-1 COS-RA or COS-VA 6 times (once per 7 days) increased soluble sugar and anthocyanin content by 18.6%-23.2% and 41.7%-46.7%, respectively, from the fruit expansion to harvest stage. COS-RA and COS-VA also enhanced gene expression related to anthocyanin synthesis (PAL, F3H, F3'5'H, DFR, and UFGT) and monomeric anthocyanin accumulation (Mal-3-O-glu, Petu-3-O-ace-glu, Del-3-O-glu). Therefore, chitooligosaccharide derivatives may improve grape fruit anthocyanin accumulation by regulating antioxidant systems, improving the photosynthetic rate and inducing gene expression related to anthocyanin synthesis.

3.
Front Plant Sci ; 14: 1135080, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968401

RESUMO

Introduction: Selenium (Se) is an essential trace element required for proper human and animal health. Methods: In this paper, we investigated the uptake and distribution characteristics of a new Se fertilizer, which comprises algal polysaccharides-selenium nanoparticles (APS-SeNPs), in rice plants in both hydroponic and pot experiments. Results: The results from the hydroponic experiments revealed that the rice root uptake of APS-SeNPs fitted the Michaelis-Menten equation, with a V max of 13.54 µg g-1 root dry weight (DW) per hour, which was 7.69 and 2.23 times those of selenite and selenate treatments, respectively. The root uptake of APS-SeNPs was inhibited by AgNO3 (64.81%-79.09%) and carbonyl cyanide 3-chlorophenylhydrazone (CCCP; 19.83%-29.03%), indicating that the uptake of APS-SeNPs by rice roots is mainly via aquaporins and is also affected by metabolic activity. Moreover, sulfur deficiency caused rice roots to absorb more APS-SeNPs, but treatment with APS-SeNPs increased the expression of the sulfate transporter OsSULTR1;2 in the roots, suggesting that OsSULTR1;2 is probably involved in the uptake of APS-SeNPs. The application of APS-SeNPs significantly increased the Se content in rice plants and the apparent Se uptake efficiency compared with selenate and selenite treatments. Most of the Se in the roots of rice plants was distributed in the cell wall, while it was primarily located in the cytosol in the shoots when treated with APS-SeNPs. The results from the pot experiments indicated that the application of Se enhanced the Se content of each rice tissue. It is worth noting that the Se content in brown rice under APS-SeNP treatment was higher than that under selenite or selenate treatment and was mainly concentrated in the embryo end, with the Se in organic form. Discussion: Our findings provide important insights into the uptake mechanism and the distribution of APS-SeNPs in rice plants.

4.
Phytother Res ; 37(2): 490-504, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36161387

RESUMO

The emergence of methicillin-resistant Staphylococcus aureus (MRSA) has become a critical global concern. Identifying new anti-S. aureus agents or therapeutic strategies are urgently needed to treat S. aureus infection. The present study investigated the antibacterial activity of 16 phenolic compounds against MRSA, four of which exhibited antibacterial activity. Their antibacterial activities increased in a dose-dependent manner but showed different responses with the extension of treatment time. Trialdehyde phloroglucinol (TPG) and 2-nitrophloroglucinol (NPG) maintained stable antibacterial activity; however, that of dichlorophenol and myricetin decreased rapidly over 24 hr of treatment. Checkerboard and time-kill assays indicated that TPG and NPG exhibited strong synergistic antibacterial activities with penicillin or bacitracin. Microscopic observation and membrane integrity analysis showed that the combination of TPG and penicillin destroyed the MRSA cell membrane, resulting in the leakage of intracellular biomacromolecules, marked changes in surface zeta potential, and the collapse of membrane potential. Moreover, the combination significantly decreased penicillinase activity and penicillin-binding protein 2a mRNA expression, inhibiting MRSA growth. Taken together, these results demonstrated that the combination of the phloroglucinol derivative TPG and penicillin has significant synergistic anti-MRSA activity and can serve as a potential therapeutic strategy to treat MRSA infections.


Assuntos
Antibacterianos , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Sinergismo Farmacológico , Testes de Sensibilidade Microbiana , Penicilinas/farmacologia , Staphylococcus aureus , Floroglucinol/farmacologia
5.
Front Plant Sci ; 13: 1108848, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36793994

RESUMO

Alginate oligosaccharides (AOS) are functional substances in seaweed extracts that regulate crop quality and stress tolerance. In this paper, the effects of AOS spray application on the antioxidant system, photosynthesis and fruit sugar accumulation in citrus was investigated through a two-year field experiment. The results showed that 8-10 spray cycles of 300-500 mg L-1 AOS (once per 15 days) increased soluble sugar and soluble solid contents by 7.74-15.79% and 9.98-15.35%, respectively, from citrus fruit expansion to harvesting. Compared with the control, the antioxidant enzyme activity and the expression of some related genes in citrus leaves started to increase significantly after the 1st AOS spray application, while the net photosynthetic rate of leaves increased obviously only after the 3rd AOS spray cycle, and the soluble sugar content of AOS-treated leaves increased by 8.43-12.96% at harvest. This suggests that AOS may enhance photosynthesis and sugar accumulation in leaves by antioxidant system regulation. Moreover, analysis of fruit sugar metabolism showed that during the 3rd to 8th AOS spray cycles, AOS treatment increased the activity of enzymes related to sucrose synthesis (SPS, SSs), upregulated the expression of sucrose metabolism (CitSPS1, CitSPS2, SUS) and transport (SUC3, SUC4) genes, and promoted the accumulation of sucrose, glucose and fructose in fruits. Notably, the concentration of soluble sugars in citrus fruits was significantly reduced at all treatments with 40% reduction in leaves of the same branch, but the loss of soluble sugars in AOS-treated fruits (18.18%) was higher than that in the control treatment (14.10%). It showed that there was a positive effect of AOS application on leaf assimilation product transport and fruit sugar accumulation. In summary, AOS application may improve fruit sugar accumulation and quality by regulating the leaf antioxidant system, increasing the photosynthetic rate and assimilate product accumulation, and promoting sugar transfer from leaves to fruits. This study shows the potential application of AOS in the production of citrus fruits for sugar enhancement.

6.
Plants (Basel) ; 9(2)2020 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-32050442

RESUMO

Cadmium (Cd) is present in many soils and, when entering the food chain, represents a major health threat to humans. Reducing Cd accumulation in plants is complicated by the fact that most known Cd transporters also operate in the transport of essential nutrients such as Zn, Fe, Mn, or Cu. This work summarizes the current knowledge of mechanisms mediating Cd uptake, radial transport, and translocation within the plant. It is concluded that real progress in the field may be only achieved if the transport of Cd and the above beneficial micronutrients is uncoupled, and we discuss the possible ways of achieving this goal. Accordingly, we suggest that the major focus of research in the field should be on the structure-function relations of various transporter isoforms and the functional assessment of their tissue-specific operation. Of specific importance are two tissues. The first one is a xylem parenchyma in plant roots; a major "controller" of Cd loading into the xylem and its transport to the shoot. The second one is a phloem tissue that operates in the last step of a metal transport. Another promising and currently underexplored avenue is to understand the role of non-selective cation channels in Cd uptake and reveal mechanisms of their regulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...