Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 10: e13214, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35462769

RESUMO

Background: Ion homeostasis is an essential process for the survival of plants under salt stress. Na+/H+ antiporters (NHXs) are secondary ion transporters that regulate Na+ compartmentalization or efflux reduce Na+ toxicity and play a critical role during plant development and stress responses. Methods and Results: To gain insight into the functional divergence of NHX genes in honeysuckle, a total of seven LjNHX genes were identified on the whole genome level and were renamed according to their chromosomal positions. All LjNHXs possessed the Na+/H+ exchanger domain and the amiloride-binding site was presented in all NHX proteins except LjNHX4. The phylogenetic analysis divided the seven NHX genes into Vac-clade (LjNHX1/2/3/4/5/7) and PM-clade (LjNHX6) based on their subcellular localization and validated by the distribution of conserved protein motifs and exon/intron organization analysis. The protein-protein interaction network showed that LjNHX4/5/6/7 shared the same putatively interactive proteins, including SOS2, SOS3, HKT1, and AVP1. Cis-acting elements and gene ontology (GO) analysis suggested that most LjNHXs involve in the response to salt stress through ion transmembrane transport. The expression profile analysis revealed that the expression levels of LjNHX3/7 were remarkably affected by salinity. These results suggested that LjNHXs play significant roles in honeysuckle development and response to salt stresses. Conclusions: The theoretical foundation was established in the present study for the further functional characterization of the NHX gene family in honeysuckle.


Assuntos
Antiporters , Lonicera , Antiporters/genética , Lonicera/genética , Filogenia , Estresse Salino/genética , Trocadores de Sódio-Hidrogênio/genética , Perfilação da Expressão Gênica
2.
Zhongguo Zhong Yao Za Zhi ; 44(8): 1531-1536, 2019 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-31090315

RESUMO

Exogenous calcium can enhance the resistance of certain plants to abiotic stress. However,the role of calcium insaltstressed honeysuckle is unclear. The study is aimed to investigate the effects of exogenous calcium on the biomass,chlorophyll content,gas exchange parameters and chlorophyll fluorescence of honeysuckle under salt stress. The results showed that the calcium-treated honeysuckle had better photochemical properties than the salt-stressed honeysuckle,such as PIABS,PItotal,which represents the overall activity of photosystemⅡ(PSⅡ),and related parameters for characterizing electron transport efficiency φP0,ψE0,φE0,σR,and φR are significantly improved. At the same time,the gas exchange parameters Gs,Ci,Trare also maintained at a high level. In summary,exogenous calcium protects the activity of PSⅡ,promotes the transmission of photosynthetic electrons,and maintains a high Ci,therefore enhances the resistance of honeysuckle under salt stress.


Assuntos
Cálcio/farmacologia , Lonicera/fisiologia , Fotossíntese , Estresse Salino , Clorofila/análise , Lonicera/efeitos dos fármacos , Folhas de Planta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...