Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioengineered ; 13(3): 5954-5961, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35191803

RESUMO

Long non-coding RNA (lncRNA) MRPS30 divergent transcript (also known as BRCAT54) is recently reported to promote lung cancer. The involvement of BRCAT54 in triple-negative breast cancer (TNBC) is unknown. This study investigated the role of BRCAT54 in TNBC. The expression of BRCAT54 and microRNA(miR)-130b was detected by RT-qPCR. The subcellular location of BRCAT54 in TNBC cells was analyzed by nuclear fractionation assay. Overexpression of BRCAT54 and miR-130b was achieved in TNBC cells to explore the interaction between then. The role of BRCAT54 and miR-130b in TNBC cell proliferation was evaluated by BrdU assay. BRCAT54 was downregulated in TNBC, while miR-130b was upregulated in TNBC tissues. BRCAT54 and miR-130b were inversely correlated across both TNBC and normal tissues. BRCAT54 was detected in cytoplasm and was predicted to be targeted by miR-130b. In TNBC cells, downregulation of BRCAT54 was observed after the overexpression of miR-130b. Moreover, BRCAT54 decreased cell proliferation and miR-130b increased cell proliferation. Besides, BRCAT54 suppressed the role of miR-130b in increasing cell proliferation. Therefore, BRCAT54 can be detected in cytoplasm and was targeted by miR-130b to increase cell proliferation.


Assuntos
MicroRNAs , RNA Longo não Codificante , Neoplasias de Mama Triplo Negativas , Linhagem Celular Tumoral , Proliferação de Células/genética , Citoplasma/genética , Citoplasma/metabolismo , Humanos , MicroRNAs/genética , RNA Longo não Codificante/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo
2.
ACS Appl Mater Interfaces ; 13(25): 29764-29769, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34152741

RESUMO

Using first-principles swarm intelligence structure prediction computations, we explore a fully planar BGe monolayer with unique mechanical and electrical properties. Theoretical calculations reveal that a free-standing BGe monolayer has excellent stability, which is confirmed by the cohesive energy (compared to experimentally synthetic borophene and germanene monolayers), phonon modes (no imaginary frequencies appeared in the phonon spectrum), ab initio molecular dynamics (AIMD) simulations (no broken bonds and geometric reconstructions), and mechanical stability criteria. The metallic feature of the BGe monolayer can be maintained after absorbing different numbers of Na atoms, ensuring good electronic conductivity during the charge/discharge process. The calculated migration energy barrier, open-circuit voltage, and theoretical specific capacity of the BGe monolayer are much better than those of some other two-dimensional (2D) materials. These findings render the BGe monolayer a potential candidate for reversible Na-ion battery anode materials with desirable performance.

3.
Opt Express ; 29(4): 5959-5971, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33726127

RESUMO

Being invisible at will has fascinated humanity for centuries and it has become more tangible with the development of metasurfaces, which have demonstrated the extraordinary ability of wavefront manipulation. However, state-of-the-art invisibility cloaks typically work in a deterministic system with a limited bandwidth and small incident angle ranges. Here, by integrating the phase-change material of Ge2Sb2Te5 and the wavefront tailoring functionality of a reflective metasurface, we have achieved a unique carpet cloak that is endowed with broadband invisibility from 6920 to 8220 nm, fully concealing objects over a wide angular span of ±25° and a prominent radar cross-section reduction. Furthermore, the central cloaking wavelength can be continuously tuned with Ge2Sb2Te5 film under different intermediate phases by precisely controlling external stimuli, which will provide a flexible and encouraging way to achieve active features once fabricated. Simulation results also show that the cloaking bandwidth can be significantly extended by triggering Ge2Sb2Te5 from the amorphous to crystalline states. Importantly, the hybrid metasurface can realize switching of "ON" and "OFF" states in terms of cloaking features by converting Ge2Sb2Te5 from the amorphous to the crystalline state. To the best of our knowledge, this is the first metasurface carpet cloak that utilizes the phase-change material of Ge2Sb2Te5 to achieve ultra-broadband, wide-angle, continuously tunable and switchable cloaking with low profiles, light weights, and easy access. This design of a reconfigurable cloak is expected to find potential applications in various areas such as vehicle cloaking, illusions and so on.

4.
Phys Chem Chem Phys ; 23(1): 666-673, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33336669

RESUMO

By means of density functional theory and unbiased structure search computations, we systematically investigated the stability and electronic properties of a new Ga2O2 monolayer. The phonon spectra and ab initio molecular dynamics simulations show that the Ga2O2 monolayer is dynamically and thermally stable. Moreover, it also shows superior open-air stability. In particular, the Ga2O2 monolayer is an indirect semiconductor with a wide band gap of 2.752 eV and high hole mobility of 4720 cm2 V-1 s-1. Its band gap can be tuned flexibly in a large range by applied strain and layer control. It exhibits high absorption coefficients (>105 cm-1) in the ultraviolet region. The combined novel electronic properties of the Ga2O2 monolayer imply that it is a highly promising material for future applications in electronics and optoelectronics.

5.
Phys Chem Chem Phys ; 21(14): 7630-7634, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30907915

RESUMO

Several recently synthesized two dimensional borophene monolayers are almost all metallic with a strong anisotropic character, but their structural instability and the need to explore their novel physical properties are still ongoing issues. We present a detailed study of four fully hydrogenated borophenes (ß12, δ3, δ5 and α borophanes) by first-principles calculations. According to phonon dispersion relations and ab initio molecular dynamics simulations, δ3 and δ5 borophanes are dynamically and thermally stable. The structural, mechanical, and electronic properties of δ3 and δ5 borophanes are analyzed. The results indicate that charge transfer from B to H atoms is crucial for the stability of two borophane phases. The HSE06 calculations predict that both δ3 and δ5 borophanes are semiconductors with indirect band gaps of 1.51 and 1.99 eV, respectively. These findings indicate that δ3 and δ5 borophanes are ideal for applications in nanoelectronics.

6.
Phys Chem Chem Phys ; 20(27): 18455-18462, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29947383

RESUMO

A simple and efficient top-down strategy, the chemical vapor etching method, is reported for synthesizing corrugated ZnO nano/micro rods (NRs). The stabilization mechanism of this unique nanostructure has been determined through a combination of aberration-corrected field emission scanning electron microscopy, high-resolution transmission electron microscopy, and first-principles calculations. The experimental data are in good agreement with the theoretical calculations, and a remarkable nonpolar-to-polar surface faceting transition is demonstrated. The corrugated-shaped structure results from the remarkable stability of the defect-induced reconstructions (O vacancy, Zn-Zn dimer), which makes the high-index polar {303[combining macron]1} and {101[combining macron]1[combining macron]} planes lower in energy compared to the nonpolar {101[combining macron]0} plane. Based on the results of first-principles surface calculations, a general formula is established to provide an accurate description of the unusual size effect of the length of the corrugated unit vs. the NR diameter, and it also offers direct explanations for certain experimental observations. The present study deepens our atomic-level understanding of the detailed structure and stability of polar surface decorated corrugated ZnO NRs, and points to a viable path towards designing polar-stable wurtzite structures.

7.
Nanotechnology ; 27(29): 295601, 2016 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-27276661

RESUMO

Using the chemical vapour deposition method, we successfully converted smooth ZnO nanorods (NRs) into corrugated NRs by simply increasing the reaction time. The surface morphology and crystallographic structure of the corrugated NRs were investigated. The corrugated NRs were decorated by alternant [Formula: see text] and [Formula: see text] planes at the exposed side surfaces while the conventional [Formula: see text] planes disappeared. No twinning boundaries were found in the periodically corrugated structures, indicating that they were type II corrugated NRs. Further investigation told us that they were selectively etched. We introduced a hydrothermal method to synthesize the smooth ZnO NRs and then etched them in a tube furnace at 950 °C with a flow of carbon monoxide. By separating the growth stage and the selective etching stage, we explicitly demonstrated a successfully selective etching effect on ZnO NRs with a carbon monoxide reducing atmosphere for the first time. An etching mechanism based on the selective reaction between carbon monoxide and the different exposed surfaces was proposed. Our results will improve the understanding of the growth mechanism on coarse or corrugated NRs and provide a new strategy for the application of surface controlled nanostructured materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...