Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(20): 11415-11428, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38727515

RESUMO

Rice sheath blight, caused by the fungus Rhizoctonia solani, poses a significant threat to rice cultivation globally. This study aimed to investigate the potential mechanisms of action of camphor derivatives against R. solani. Compound 4o exhibited superior fungicidal activities in vitro (EC50 = 6.16 mg/L), and in vivo curative effects (77.5%) at 500 mg/L were significantly (P < 0.01) higher than the positive control validamycin·bacillus (66.1%). Additionally, compound 4o exhibited low cytotoxicity and acute oral toxicity for adult worker honeybees of Apis mellifera L. Mechanistically, compound 4o disrupted mycelial morphology and microstructure, increased cell membrane permeability, and inhibited both PDH and SDH enzyme activities. Molecular docking and molecular dynamics analyses indicated a tight interaction of compound 4o with PDH and SDH active sites. In summary, compound 4o exhibited substantial antifungal efficacy against R. solani, serving as a promising lead compound for further optimization of antifungal agents.


Assuntos
Cânfora , Fungicidas Industriais , Simulação de Acoplamento Molecular , Oryza , Doenças das Plantas , Rhizoctonia , Rhizoctonia/efeitos dos fármacos , Oryza/microbiologia , Doenças das Plantas/microbiologia , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Animais , Cânfora/farmacologia , Cânfora/química , Abelhas/microbiologia , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/síntese química , Relação Estrutura-Atividade
2.
J Fungi (Basel) ; 8(8)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35893130

RESUMO

Control of fungal phytopathogens affecting crops and woodlands is an important goal in environmental management and the maintenance of food security. This work describes the synthesis of 37 camphor derivatives, of which 27 were new compounds. Their antifungal effects on six fungi were evaluated in vitro. Compounds 3a, 4a and 5k showed strong antifungal activity against Trametes versicolor, with EC50 values of 0.43, 6.80 and 4.86 mg/L, respectively, which were better than that of tricyclazole (EC50 118.20 mg/L) and close to or better than that of carbendazim (EC50 1.20 mg/L). The most potent compound, 3a, exhibited broad-spectrum antifungal activity towards six fungi with EC50 values within the range of 0.43-40.18 mg/L. Scanning electron microscopy demonstrated that compounds 3a, 4a and 5k gave irregular growth and shriveling of the mycelia. In vitro cytotoxicity evaluation revealed that the tested camphor derivatives had mild or no cytotoxicity for LO2 and HEK293T cell lines. Quantitative structure-activity relationship (QSAR) analysis revealed that the number of F atoms, relative molecular weight, the atomic orbital electronic population and total charge on the positively charged surfaces of the molecules of camphor derivatives have effects on antifungal activity. The present study may provide a theoretical basis for a high-value use of camphor and could be helpful for the development of novel potential antifungals.

3.
J Agric Food Chem ; 69(48): 14512-14519, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34809431

RESUMO

To develop new antifungal agents against phytopathogenic fungi, a series of citral-thiazolyl hydrazine derivatives were designed, synthesized, and characterized by FT-IR, 1H NMR, 13C NMR, and HRMS. Antifungal activity results showed that most synthetic compounds exhibited broad-spectrum antifungal activities against six phytopathogenic fungi in vitro. Notably, compounds b and c15 exhibited remarkable antifungal activity against Colletotrichum gloeosprioides, Rhizoctonia solani, Phytophthora nicotianae var. nicotianae, Diplodia pinea, Colletotrichum acutatum, and Fusarium oxysporum f. sp. niveum, which were all superior to the positive control tricyclazole. Structure-activity relationship (SAR) studies demonstrated that introducing electron-withdrawing groups such as F on the benzene ring exhibited outstanding antifungal activities against all the tested fungi. Furthermore, compound b could effectively control rice sheath blight and showed higher curative activities against R. solani than validamycin·bacillus in vivo. In addition, the in vitro cytotoxicity results indicated that compound b possessed moderate cytotoxicity activity, and all citral-thiazolyl hydrazine derivatives exhibited lower or no cytotoxicity to the LO2 and HEK293 cell lines. In addition, the acute oral toxicity test showed that compound b had moderate toxicity (level II) with an LD50 value of 310 mg/kg bw (95% confidence limit: 175-550 mg/kg bw). Finally, a preliminary action mechanism study showed that causing obvious malformation of mycelium and increasing cell membrane permeability are two of the potential mechanisms by which compound b exerts antifungal activity. The present work indicates that some of these derivatives may serve as novel potential fungicides, and compound b is expected to be the leading structure for the development of new antifungal agents.


Assuntos
Antifúngicos , Fungos , Monoterpenos Acíclicos , Antifúngicos/farmacologia , Células HEK293 , Humanos , Hidrazinas/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Relação Estrutura-Atividade
4.
Sci Total Environ ; 792: 148381, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34146805

RESUMO

Manures, storages for antibiotic resistance genes (ARGs), pollute soil and water as well as endanger human health. Recently, we have been searching a better solution to remove antibiotics and ARGs during aerobic composting. Here, the dynamics of chitosan addition on the profiles of 71 ARGs, bacterial communities, chlortetracycline (CTC), ofloxacin (OFX) were investigated in chicken manure composting and compared with zeolite addition. Chitosan addition effectively reduces antibiotics contents (CTC under detection limit, OFX 90.96%), amounts (18) and abundance (56.7%, 11.1% higher than zeolite addition) of ARGs and mobile genetic elements (MGEs) after 42 days composting. Network analysis indicated that a total of 27 genera strains assigned into 4 phyla (Firmicutes, Proteobacteria, Actinobacteria and Bacteroidetes) were the potential hosts of ARGs. Redundancy analysis (RDA) demonstrated that bacterial community succession is the main contributor in the variation of ARGs. Overall, chitosan addition may effect bacterial composition by influencing physic-chemical properties and the concentration of antibiotics, Cu2+, Zn2+ to reduce the risk of ARG transmission. This study gives a new strategy about antibiotics and ARGs removal from composting on the basis of previous studies.


Assuntos
Quitosana , Compostagem , Animais , Antibacterianos , Galinhas , Genes Bacterianos , Humanos , Esterco
5.
Dalton Trans ; 46(48): 17061-17066, 2017 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-29188259

RESUMO

We report the synthesis and application of ordered mesoporous TiNb6O17 microspheres (M-TNO) using a one-step solvothermal method for the first time in lithium-ion batteries. The diameters of TiNb6O17 microspheres are in the range from 2.2 to 2.4 µm with a mesopore size of about 35 nm, which promotes the electron and ion migration in charge/discharge processes. M-TNO shows a high specific capacitance (307.2 mA h g-1) at a low current density of 0.2 C and a long-term cycle life over 500 cycles as an electrode. The retentive capacity of the batteries is 77% of the initial cycle after 500 cycles. It is worth noting that M-TNO exhibits excellent rate capacity, which decreases slowly from 265.7 to 172.4 mA h g-1 with the current density increasing from 1 C to 30 C. The retentive capacity at a current density of 30 C is 65% compared to that at 1 C.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...