Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(9): 11474-11482, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35213142

RESUMO

Li-organic batteries (LOBs) are promising advanced battery systems because of their unique advantages in capacity, cost, and sustainability. However, the shuttling effect of soluble organic redox intermediates and the intrinsic dissolution of small-molecular electrodes have hindered the practical application of these cells, especially under high operating temperatures. Herein, a cross-linked membrane with abundant negative charge for high-temperature LOBs is prepared via electrospinning of poly(vinyl alcohol) containing halloysite nanotubes (HNTs). The translocation of negatively charged organic intermediates can be suppressed by the electronic repulsion and the cross-linked network while the positively charged Li+ are maintained, which is attributed to the intrinsic electronegativity of HNTs and their well-organized and homogeneous distribution in the PVA matrix. A battery using a PVA/HNT composite separator (EPH-10) and an anthraquinone (AQ) cathode exhibits a high initial discharge capacity of 231.6 mAh g-1 and an excellent cycling performance (91.4% capacity retention, 300 cycles) at 25 °C. Even at high temperatures (60 and 80 °C), its capacity retention is more than 89.2 and 80.4% after 100 cycles, respectively. Our approach demonstrates the potential of the EPH-10 composite membrane as a separator for high-temperature LOB applications.

2.
Nanoscale Res Lett ; 4(10): 1126-1129, 2009 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-20596468

RESUMO

Porous alumina film on aluminum with gel-like pore wall was prepared by a two-step anodization of aluminum, and the corresponding gel-like porous film was etched in diluted NaOH solution to produce alumina nanowires in the form of densely packed alignment. The resultant alumina nanowires were reacted with NH(3) and evaporated aluminum at an elevated temperature to be converted into densely packed aluminum nitride (AlN) nanowires. The AlN nanowires have a diameter of 15-20 nm larger than that of the alumina nanowires due to the supplement of the additional evaporated aluminum. The results suggest that it might be possible to prepare other aluminum compound nanowires through similar process.

3.
Environ Sci Technol ; 42(7): 2342-8, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18504963

RESUMO

Nanostructured TiO2 with different hierarchical morphologies were synthesized via a warmly hydrothermal route. The properties of the products were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, N2 adsorption, UV-vis spectroscopy, etc. Two of the products, TiO2 1D nanorods (one-dimensional rutile TiO2 nanorods) and TiO2 3D0D microspheres (three-dimensional anatase TiO2 nanoparticle-assembled microspheres) exhibited superior photocatalytic effects on phenol degradation under UV illumination, compared with TiO2 3D1D microspheres (three-dimensional rutile TiO2 nanorods-assembled microspheres). Moreover, TiO2 3D0D was superior to TiO2 1D, as indicated by a 30% higher mineralization of dissolved phenol. Dihydroxybenze, 4,4'-dihydroxybiphenyl, benzoquinone, maleic anhydride, etc. were identified as the degradation intermediates. The excellent catalytic effect was attributed to the structural features of TiO2 1D nanorods and TiO2 3D0D microspheres, that is, a larger amount of surface active sites and a higher band gap energy resulted in more efficient decomposition of organic contaminants.


Assuntos
Nanoestruturas , Fenóis/química , Titânio/química , Catálise , Microscopia Eletrônica de Varredura , Fotoquímica , Espectrofotometria Ultravioleta , Difração de Raios X
4.
Nanotechnology ; 19(7): 075608, 2008 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-21817645

RESUMO

A simple and low-cost method based on a two-step heat treatment of AgNO(3)/SiO(2) film has been developed for fabricating metal Ag nanoring arrays. The as-prepared nanorings have an inner diameter of 70-250 nm and an average wall thickness (namely wire diameter) of approximately 30 nm with a number density of approximately 10(9) cm(-2) on the surface of the SiO(2) matrix. X-ray diffraction (XRD) results reveal that these nanorings exhibit a face-centered cubic crystal structure. Furthermore, a new growth mechanism, namely a molten metal bubble as a self-template, is tentatively proposed for Ag nanorings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...