Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Geriatr Cardiol ; 20(8): 577-585, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37675263

RESUMO

OBJECTIVE: To develop and validate a user-friendly risk score for older mitral regurgitation (MR) patients, referred to as the Elder-MR score. METHODS: The China Senile Valvular Heart Disease (China-DVD) Cohort Study functioned as the development cohort, while the China Valvular Heart Disease (China-VHD) Study was employed for external validation. We included patients aged 60 years and above receiving medical treatment for moderate or severe MR (2274 patients in the development cohort and 1929 patients in the validation cohort). Candidate predictors were chosen using Cox's proportional hazards model and stepwise selection with Akaike's information criterion. RESULTS: Eight predictors were identified: age ≥ 75 years, body mass index < 20 kg/m2, NYHA class III/IV, secondary MR, anemia, estimated glomerular filtration rate < 60 mL/min per 1.73 m2, albumin < 35 g/L, and left ventricular ejection fraction < 60%. The model displayed satisfactory performance in predicting one-year mortality in both the development cohort (C-statistic = 0.73, 95% CI: 0.69-0.77, Brier score = 0.06) and the validation cohort (C-statistic = 0.73, 95% CI: 0.68-0.78, Brier score = 0.06). The Elder-MR score ranges from 0 to 15 points. At a one-year follow-up, each point increase in the Elder-MR score represents a 1.27-fold risk of death (HR = 1.27, 95% CI: 1.21-1.34, P < 0.001) in the development cohort and a 1.24-fold risk of death (HR = 1.24, 95% CI: 1.17-1.30, P < 0.001) in the validation cohort. Compared to EuroSCORE II, the Elder-MR score demonstrated superior predictive accuracy for one-year mortality in the validation cohort (C-statistic = 0.71 vs. 0.70, net reclassification improvement = 0.320, P < 0.01; integrated discrimination improvement = 0.029, P < 0.01). CONCLUSIONS: The Elder-MR score may serve as an effective risk stratification tool to assist clinical decision-making in older MR patients.

2.
Huan Jing Ke Xue ; 37(2): 459-65, 2016 Feb 15.
Artigo em Chinês | MEDLINE | ID: mdl-27363131

RESUMO

Waste incineration is one of the important atmospheric mercury emission sources. The aim of this article is to explore the atmospheric mercury pollution level of waste incineration industry from Chongqing. This study investigated the mercury emissions from a municipal solid waste incineration plant and a medical waste incineration plant in Chongqing. The exhaust gas samples in these two incineration plants were obtained using USA EPA 30B method. The mercury concentrations in the fly ash and bottom ash samples were analyzed. The results indicated that the mercury concentrations of the municipal solid waste and medical waste incineration plant in Chongqing were (26.4 +/- 22.7) microg x m(-3) and (3.1 +/- 0.8) microg x m(-3) in exhaust gas respectively, (5279.2 +/- 798.0) microg x kg(-1) and (11,709.5 +/- 460.5) microg x kg(-1) in fly ash respectively. Besides, the distribution proportions of the mercury content from municipal solid waste and medical waste in exhaust gas, fly ash, and bottom ash were 34.0%, 65.3%, 0.7% and 32.3%, 67.5%, 0.2% respectively; The mercury removal efficiencies of municipal solid waste and medical waste incineration plants were 66.0% and 67.7% respectively. The atmospheric mercury emission factors of municipal solid waste and medical waste incineration plants were (126.7 +/- 109.0) microg x kg(-1) and (46.5 +/- 12.0) microg x kg(-1) respectively. Compared with domestic municipal solid waste incineration plants in the Pearl River Delta region, the atmospheric mercury emission factor of municipal solid waste incineration plant in Chongqing was lower.


Assuntos
Poluentes Atmosféricos/análise , Atmosfera/análise , Incineração , Mercúrio/análise , China , Cinza de Carvão/análise , Resíduos Industriais , Resíduos de Serviços de Saúde , Resíduos Sólidos
3.
Huan Jing Ke Xue ; 37(10): 3766-3773, 2016 Oct 08.
Artigo em Chinês | MEDLINE | ID: mdl-29964407

RESUMO

Municipal solid waste (MSW) incineration is one of the most important atmospheric mercury emission sources. To investigate the mercury concentrations of MSW and mercury emission characteristics in incineration plants, this study analyzed the MSW sampled in 3 typical MSW incineration plants in Shanghai, Guangzhou and Wuhu respectively. The exhaust gas samples in incineration plants were sampled by using OH (Ontario Hydro) method. The mercury concentrations in fly ash, and bottom ash samples were also analyzed. The results indicated that mercury concentrations of MSW in Shanghai, Guangzhou, and Wuhu incineration plants were (0.39±0.04) mg·kg-1, (0.57±0.05) mg·kg-1, and (0.27±0.08) mg·kg-1 respectively. The mercury concentrations of exhaust gas in Guangzhou, Wuhu MSW incineration plants were (9.5±3.9) µg·m-3 and (24.1±6.0) µg·m-3 respectively; Particulate mercury (Hgp), gaseous oxidized mercury (Hg2+), and gaseous elemental mercury (Hg0) represented (0.9±0.8)%, (89.0±5.4)%, (10.1±4.6)% in Guangzhou MSW incineration plant, and (1.0±0.8)%, (65.4±27.6)%, (33.6±27.5)% in Wuhu MSW incineration plant, respectively. Gaseous oxidized mercury (Hg2+) of exhaust gas in different incineration process showed different distribution proportions. Besides, mercury removal efficiency of Guangzhou, Wuhu MWS incineration plants was 96.7% and 33.7%, respectively. The atmospheric mercury emission factors of Shanghai, Guangzhou, and Wuhu MSW incineration plants were (0.156±0.016) mg·kg-1, (0.019±0.002) mg·kg-1, (0.178±0.027) mg·kg-1 respectively. Compared with MSW incineration plants in Japan and Korea, the atmospheric mercury emission factor of Guangzhou incineration plant was slightly lower; Atmospheric mercury emission factors of Shanghai and Wuhu MSW incineration plants were close to those of domestic fractional MSW incineration plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...