Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Technol ; 44(8): 1156-1168, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34704540

RESUMO

In this work, g-C3N4/ZIF-8 heterojunction photocatalysts were synthesised by the process by which the metal-organic framework ZIF-8 nanoparticles were grown onto the g-C3N4 layer in situ. Bismuth element was doped into the as-prepared g-C3N4/ZIF-8 material and a new type of Bi@g-C3N4/ZIF-8 composite photocatalysts was manufactured, in which the doping element acts in adjusting the bandgap in the photocatalysts. The prepared photocatalysts were characterised by XRD, FESEM, TEM, FTIR, XPS, UV-VIS DRS, photoluminescence and photo-electrochemical experiments. The results show that the ZIF-8 nanoparticles grown in situ were well-formed onto the g-C3N4 layer, and bismuth was evenly doped into the gaps of the g-C3N4/ZIF-8 framework. The degradation rate of methylene blue by CNZ-1.5(Bi)-12, which was a photocatalyst composed of 12% Bi-doped with g-C3N4/ZIF-8 material (the mass ratio of g-C3N4: ZIF-8 = 1:1.5), reached 86.6% under visible light irradiation within 60 min. The free radical scavenging experiment and electron spin resonance spectroscopy showed that ∙OH was the main active substance. Bismuth doping into the photocatalytic system promotes the excitation of electrons from the valence band to the conduction band and provides a good channel for the transmission of photogenerated carriers as well. It is achieved that intensive visible light absorption, the enhanced separation efficiency of photogenerated carriers, and excellent thermal stability and high recyclability in the novel composite photocatalyst, owing to the synergistic effect of the introduced bismuth with the heterostructure of g-C3N4/ZIF-8. Therefore, the synthesised Bi@g-C3N4/ZIF-8 heterojunction photocatalysts may be used as a good photocatalyst for purifying and degrading organic matter in sewage.


Assuntos
Grafite , Iluminação , Bismuto/química , Grafite/química , Catálise , Luz
2.
Nanomaterials (Basel) ; 10(11)2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33207732

RESUMO

Supercapacitors (SCs), one of the most popular types of energy-storage devices, present lots of advantages, such as large power density and fast charge/discharge capability. Being the promising SCs electrode materials, metal-organic frameworks (MOFs) and their derivatives have gained ever-increasing attention due to their large specific surface area, controllable porous structure and rich diversity. Herein, the recent development of MOFs-based materials and their application in SCs as the electrode are reviewed and summarized. The preparation method, the morphology of the materials and the electrical performance of various MOFs and their derivatives (such as carbon, metal oxide/hydroxide and metal sulfide) are briefly discussed. Most of recent works concentrate on Ni-, Co- and Mn-MOFs and their composites/derivatives. Conclusions and our outlook for the researches are also given, which would be a valuable guideline for the rational design of MOFs materials for SCs in the near future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...