Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 451: 139404, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38714112

RESUMO

Models predicting lipid oxidation in oil-in-water (O/W) emulsions are a requirement for developing effective antioxidant solutions. Existing models do, however, not include explicit equations that account for composition and structural features of O/W emulsions. To bridge this gap, a mechanistic kinetic model for lipid oxidation in emulsions is presented, describing the emulsion as a one-dimensional three phase (headspace, water, and oil) system. Variation in oil droplet sizes, overall surface area of oil/water interface, oxidation of emulsifiers, and the presence of catalytic transition metals were accounted for. For adequate predictions, the overall surface area of oil/water interface needs to be determined from the droplet size distribution obtained by dynamic and static light scattering (DLS, SLS). The kinetic model predicted well the formation of oxidation products in both mono- and polydisperse emulsions, with and without presence of catalytic transition metals.


Assuntos
Emulsões , Lipídeos , Oxirredução , Polissorbatos , Emulsões/química , Cinética , Polissorbatos/química , Lipídeos/química , Água/química , Tamanho da Partícula , Modelos Químicos , Óleos/química
2.
Food Res Int ; 147: 110555, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34399532

RESUMO

Lipid oxidation compromises the shelf-life of lipid-containing foods, leading to the generation of unpleasant off-flavours. Monitoring lipid oxidation under normal shelf-life conditions can be time-consuming (i.e. weeks or months) and therefore accelerated shelf-life conditions are often applied. However, little is known on their impact on the lipid oxidation mechanisms. In this study, different oxygen partial pressures (PO2; 10 and 21%), temperatures (20, 30 and 40 °C), and the removal of antioxidants through stripping of the oil were tested to accelerate lipid oxidation. Increasing the incubation temperature of stripped oil blends from 30 to 40 °C reduced the onset of lipid oxidation from 4 to 2 weeks, whereas the PO2 had no impact. Surprisingly, at room temperature, an increase in PO2 resulted in a longer onset time (10 weeks under 10% oxygen, 15 weeks under 21% oxygen). We hypothesize that this is due to a shift in (initiation) mechanism. In non-stripped oil, an increase in PO2 from 10 to 21% decreased the onset time from 16 to 10 weeks (40 °C). Temperature elevations and stripping led to a shift towards more trans-trans diene hydroperoxides, as compared to the cis-trans conformation. Additionally, oil stripping led to an increase in oxidized PUFAs with three or more double bonds in which the hydroperoxide group is located between the double bond pattern, instead of on the edge of it. Lastly, it was shown that small additions of LC-PUFAs (0, 0.3, 0.6, 1.2 and 2.3%, w/w) accelerate lipid oxidation, even in relatively stable stripped oils. In conclusion, increased PO2 and slightly elevated temperatures hold fair potential for accelerated shelf-life testing of non-stripped oils with a limited impact on the lipid oxidation mechanisms, whereas stripping significantly changes propagation mechanisms.


Assuntos
Antioxidantes , Óleos de Plantas , Oxigênio , Pressão Parcial , Espectroscopia de Prótons por Ressonância Magnética , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...