Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 38(Database issue): D396-400, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19906701

RESUMO

Since 2003, MicrobesOnline (http://www.microbesonline.org) has been providing a community resource for comparative and functional genome analysis. The portal includes over 1000 complete genomes of bacteria, archaea and fungi and thousands of expression microarrays from diverse organisms ranging from model organisms such as Escherichia coli and Saccharomyces cerevisiae to environmental microbes such as Desulfovibrio vulgaris and Shewanella oneidensis. To assist in annotating genes and in reconstructing their evolutionary history, MicrobesOnline includes a comparative genome browser based on phylogenetic trees for every gene family as well as a species tree. To identify co-regulated genes, MicrobesOnline can search for genes based on their expression profile, and provides tools for identifying regulatory motifs and seeing if they are conserved. MicrobesOnline also includes fast phylogenetic profile searches, comparative views of metabolic pathways, operon predictions, a workbench for sequence analysis and integration with RegTransBase and other microbial genome resources. The next update of MicrobesOnline will contain significant new functionality, including comparative analysis of metagenomic sequence data. Programmatic access to the database, along with source code and documentation, is available at http://microbesonline.org/programmers.html.


Assuntos
Bactérias/genética , Biologia Computacional/métodos , Bases de Dados Genéticas , Bases de Dados de Ácidos Nucleicos , Algoritmos , Biologia Computacional/tendências , Bases de Dados de Proteínas , Perfilação da Expressão Gênica , Genoma Bacteriano , Armazenamento e Recuperação da Informação/métodos , Internet , Análise de Sequência com Séries de Oligonucleotídeos , Estrutura Terciária de Proteína , Software
2.
Science ; 313(5791): 1261-6, 2006 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16946064

RESUMO

Draft genome sequences have been determined for the soybean pathogen Phytophthora sojae and the sudden oak death pathogen Phytophthora ramorum. Oömycetes such as these Phytophthora species share the kingdom Stramenopila with photosynthetic algae such as diatoms, and the presence of many Phytophthora genes of probable phototroph origin supports a photosynthetic ancestry for the stramenopiles. Comparison of the two species' genomes reveals a rapid expansion and diversification of many protein families associated with plant infection such as hydrolases, ABC transporters, protein toxins, proteinase inhibitors, and, in particular, a superfamily of 700 proteins with similarity to known oömycete avirulence genes.


Assuntos
Evolução Biológica , DNA de Algas/genética , Genoma , Phytophthora/genética , Phytophthora/patogenicidade , Proteínas de Algas/genética , Proteínas de Algas/fisiologia , Genes , Hidrolases/genética , Hidrolases/metabolismo , Fotossíntese/genética , Filogenia , Mapeamento Físico do Cromossomo , Phytophthora/classificação , Phytophthora/fisiologia , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Sequências Repetitivas de Ácido Nucleico , Análise de Sequência de DNA , Simbiose , Toxinas Biológicas/genética
3.
BMC Bioinformatics ; 6: 292, 2005 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-16336665

RESUMO

BACKGROUND: Recent advances in sequencing technologies promise to provide a better understanding of the genetics of human disease as well as the evolution of microbial populations. Single Nucleotide Polymorphisms (SNPs) are established genetic markers that aid in the identification of loci affecting quantitative traits and/or disease in a wide variety of eukaryotic species. With today's technological capabilities, it has become possible to re-sequence a large set of appropriate candidate genes in individuals with a given disease in an attempt to identify causative mutations. In addition, SNPs have been used extensively in efforts to study the evolution of microbial populations, and the recent application of random shotgun sequencing to environmental samples enables more extensive SNP analysis of co-occurring and co-evolving microbial populations. The program is available at http://genome.lbl.gov/vista/snpvista1. RESULTS: We have developed and present two modifications of an interactive visualization tool, SNP-VISTA, to aid in the analyses of the following types of data: A. Large-scale re-sequence data of disease-related genes for discovery of associated and/or causative alleles (GeneSNP-VISTA). B. Massive amounts of ecogenomics data for studying homologous recombination in microbial populations (EcoSNP-VISTA). The main features and capabilities of SNP-VISTA are: 1) mapping of SNPs to gene structure; 2) classification of SNPs, based on their location in the gene, frequency of occurrence in samples and allele composition; 3) clustering, based on user-defined subsets of SNPs, highlighting haplotypes as well as recombinant sequences; 4) integration of protein evolutionary conservation visualization; and 5) display of automatically calculated recombination points that are user-editable. CONCLUSION: The main strength of SNP-VISTA is its graphical interface and use of visual representations, which support interactive exploration and hence better understanding of large-scale SNP data by the user.


Assuntos
Biologia Computacional/métodos , Polimorfismo de Nucleotídeo Único , Software , Algoritmos , Alelos , Mapeamento Cromossômico , Análise por Conglomerados , Gráficos por Computador , Análise Mutacional de DNA , Bases de Dados de Ácidos Nucleicos , Etiquetas de Sequências Expressas , Genoma Humano , Haplótipos , Humanos , Desequilíbrio de Ligação , Recombinação Genética , Alinhamento de Sequência , Análise de Sequência de DNA , Interface Usuário-Computador
4.
PLoS Comput Biol ; 1(5): e55, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16261196

RESUMO

Bacterial response to nitric oxide (NO) is of major importance since NO is an obligatory intermediate of the nitrogen cycle. Transcriptional regulation of the dissimilatory nitric oxides metabolism in bacteria is diverse and involves FNR-like transcription factors HcpR, DNR, and NnrR; two-component systems NarXL and NarQP; NO-responsive activator NorR; and nitrite-sensitive repressor NsrR. Using comparative genomics approaches, we predict DNA-binding motifs for these transcriptional factors and describe corresponding regulons in available bacterial genomes. Within the FNR family of regulators, we observed a correlation of two specificity-determining amino acids and contacting bases in corresponding DNA recognition motif. Highly conserved regulon HcpR for the hybrid cluster protein and some other redox enzymes is present in diverse anaerobic bacteria, including Clostridia, Thermotogales, and delta-proteobacteria. NnrR and DNR control denitrification in alpha- and beta-proteobacteria, respectively. Sigma-54-dependent NorR regulon found in some gamma- and beta-proteobacteria contains various enzymes involved in the NO detoxification. Repressor NsrR, which was previously known to control only nitrite reductase operon in Nitrosomonas spp., appears to be the master regulator of the nitric oxides' metabolism, not only in most gamma- and beta-proteobacteria (including well-studied species such as Escherichia coli), but also in gram-positive Bacillus and Streptomyces species. Positional analysis and comparison of regulatory regions of NO detoxification genes allows us to propose the candidate NsrR-binding motif. The most conserved member of the predicted NsrR regulon is the NO-detoxifying flavohemoglobin Hmp. In enterobacteria, the regulon also includes two nitrite-responsive loci, nipAB (hcp-hcr) and nipC (dnrN), thus confirming the identity of the effector, i.e. nitrite. The proposed NsrR regulons in Neisseria and some other species are extended to include denitrification genes. As the result, we demonstrate considerable interconnection between various nitrogen-oxides-responsive regulatory systems for the denitrification and NO detoxification genes and evolutionary plasticity of this transcriptional network.


Assuntos
Bactérias/metabolismo , Biologia Computacional/métodos , Regulação Bacteriana da Expressão Gênica , Genômica/métodos , Óxidos de Nitrogênio/química , Transcrição Gênica , Motivos de Aminoácidos , Proteínas de Bactérias/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Modelos Biológicos , Família Multigênica , Nitritos , Oxirredução , Filogenia
5.
Genome Res ; 15(7): 1015-22, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15998914

RESUMO

At present, hundreds of microbial genomes have been sequenced, and hundreds more are currently in the pipeline. The Virtual Institute for Microbial Stress and Survival has developed a publicly available suite of Web-based comparative genomic tools (http://www.microbesonline.org) designed to facilitate multispecies comparison among prokaryotes. Highlights of the MicrobesOnline Web site include operon and regulon predictions, a multispecies genome browser, a multispecies Gene Ontology browser, a comparative KEGG metabolic pathway viewer, a Bioinformatics Workbench for in-depth sequence analysis, and Gene Carts that allow users to save genes of interest for further study while they browse. In addition, we provide an interface for genome annotation, which like all of the tools reported here, is freely available to the scientific community.


Assuntos
Genoma Bacteriano , Genômica , Animais , Biologia Computacional , Gráficos por Computador , Bases de Dados Genéticas , Bases de Dados de Proteínas , Estrutura Terciária de Proteína/genética , Software , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...