Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Cell Physiol ; 319(6): C1107-C1119, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32997514

RESUMO

We have reported that the reduction in plasma membrane cholesterol could decrease cellular Na/K-ATPase α1-expression through a Src-dependent pathway. However, it is unclear whether cholesterol could regulate other Na/K-ATPase α-isoforms and the molecular mechanisms of this regulation are not fully understood. Here we used cells expressing different Na/K-ATPase α isoforms and found that membrane cholesterol reduction by U18666A decreased expression of the α1-isoform but not the α2- or α3-isoform. Imaging analyses showed the cellular redistribution of α1 and α3 but not α2. Moreover, U18666A led to redistribution of α1 to late endosomes/lysosomes, while the proteasome inhibitor blocked α1-reduction by U18666A. These results suggest that the regulation of the Na/K-ATPase α-subunit by cholesterol is isoform specific and α1 is unique in this regulation through the endocytosis-proteasome pathway. Mechanistically, loss-of-Src binding mutation of A425P in α1 lost its capacity for regulation by cholesterol. Meanwhile, gain-of-Src binding mutations in α2 partially restored the regulation. Furthermore, through studies in caveolin-1 knockdown cells, as well as subcellular distribution studies in cell lines with different α-isoforms, we found that Na/K-ATPase, Src, and caveolin-1 worked together for the cholesterol regulation. Taken together, these new findings reveal that the putative Src-binding domain and the intact Na/K-ATPase/Src/caveolin-1 complex are indispensable for the isoform-specific regulation of Na/K-ATPase by cholesterol.


Assuntos
Caveolina 1/metabolismo , Colesterol/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Androstenos/farmacologia , Animais , Anticolesterolemiantes/farmacologia , Caveolina 1/genética , Linhagem Celular , Membrana Celular/metabolismo , Isoenzimas/metabolismo , Fígado/metabolismo , Ratos , Transdução de Sinais/fisiologia , Suínos , Quinases da Família src/metabolismo
2.
J Am Heart Assoc ; 9(7): e014072, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32200719

RESUMO

Background Renal artery stenosis is a common cause of renal ischemia, contributing to the development of chronic kidney disease. To investigate the role of local CD40 expression in renal artery stenosis, Goldblatt 2-kidney 1-clip surgery was performed on hypertensive Dahl salt-sensitive rats (S rats) and genetically modified S rats in which CD40 function is abolished (Cd40mutant). Methods and Results Four weeks following the 2-kidney 1-clip procedure, Cd40mutant rats demonstrated significantly reduced blood pressure and renal fibrosis in the ischemic kidneys compared with S rat controls. Similarly, disruption of Cd40 resulted in reduced 24-hour urinary protein excretion in Cd40mutant rats versus S rat controls (46.2±1.9 versus 118.4±5.3 mg/24 h; P<0.01), as well as protection from oxidative stress, as indicated by increased paraoxonase activity in Cd40mutant rats versus S rat controls (P<0.01). Ischemic kidneys from Cd40mutant rats demonstrated a significant decrease in gene expression of the profibrotic mediator, plasminogen activator inhibitor-1 (P<0.05), and the proinflammatory mediators, C-C motif chemokine ligand 19 (P<0.01), C-X-C Motif Chemokine Ligand 9 (P<0.01), and interleukin-6 receptor (P<0.001), compared with S rat ischemic kidneys, as assessed by quantitative PCR assay. Reciprocal renal transplantation documented that CD40 exclusively expressed in the kidney contributes to ischemia-induced renal fibrosis. Furthermore, human CD40-knockout proximal tubule epithelial cells suggested that suppression of CD40 signaling significantly inhibited expression of proinflammatory and -fibrotic genes. Conclusions Taken together, our data suggest that activation of CD40 induces a significant proinflammatory and -fibrotic response and represents an attractive therapeutic target for treatment of ischemic renal disease.


Assuntos
Antígenos CD40/metabolismo , Isquemia/metabolismo , Rim/irrigação sanguínea , Rim/metabolismo , Mutação , Obstrução da Artéria Renal/metabolismo , Animais , Pressão Sanguínea , Antígenos CD40/genética , Linhagem Celular , Modelos Animais de Doenças , Fibrose , Taxa de Filtração Glomerular , Humanos , Mediadores da Inflamação/metabolismo , Isquemia/genética , Isquemia/patologia , Isquemia/fisiopatologia , Rim/patologia , Rim/fisiopatologia , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Masculino , Estresse Oxidativo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Ratos Endogâmicos Dahl , Obstrução da Artéria Renal/genética , Obstrução da Artéria Renal/patologia , Obstrução da Artéria Renal/fisiopatologia , Transdução de Sinais
3.
PLoS Biol ; 17(3): e3000189, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30893295

RESUMO

Insulin resistance and obesity are associated with reduced gonadotropin-releasing hormone (GnRH) release and infertility. Mice that lack insulin receptors (IRs) throughout development in both neuronal and non-neuronal brain cells are known to exhibit subfertility due to hypogonadotropic hypogonadism. However, attempts to recapitulate this phenotype by targeting specific neurons have failed. To determine whether astrocytic insulin sensing plays a role in the regulation of fertility, we generated mice lacking IRs in astrocytes (astrocyte-specific insulin receptor deletion [IRKOGFAP] mice). IRKOGFAP males and females showed a delay in balanopreputial separation or vaginal opening and first estrous, respectively. In adulthood, IRKOGFAP female mice also exhibited longer, irregular estrus cycles, decreased pregnancy rates, and reduced litter sizes. IRKOGFAP mice show normal sexual behavior but hypothalamic-pituitary-gonadotropin (HPG) axis dysregulation, likely explaining their low fecundity. Histological examination of testes and ovaries showed impaired spermatogenesis and ovarian follicle maturation. Finally, reduced prostaglandin E synthase 2 (PGES2) levels were found in astrocytes isolated from these mice, suggesting a mechanism for low GnRH/luteinizing hormone (LH) secretion. These findings demonstrate that insulin sensing by astrocytes is indispensable for the function of the reproductive axis. Additional work is needed to elucidate the role of astrocytes in the maturation of hypothalamic reproductive circuits.


Assuntos
Astrócitos/metabolismo , Receptor de Insulina/metabolismo , Animais , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Luteinizante/metabolismo , Masculino , Camundongos , Prostaglandina-E Sintases/metabolismo , Puberdade Tardia/metabolismo
4.
Atherosclerosis ; 270: 199-204, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29290366

RESUMO

BACKGROUND AND AIMS: Recent in vitro studies have showed that in macrophages, deletion of the non-selective Ca2+-permeable channel TRPC3 impairs expression of the osteogenic protein BMP-2. The pathophysiological relevance of this effect in atherosclerotic plaque calcification remains to be determined. METHODS: We used Ldlr-/- mice with macrophage-specific loss of TRPC3 (MacTrpc3-/-/Ldlr-/-) to examine the effect of macrophage Trpc3 on plaque calcification and osteogenic features in advanced atherosclerosis. RESULTS: After 25 weeks on high fat diet, aortic root plaques in MacTrpc3-/-/Ldlr-/- mice showed reduced size, lipid and macrophage content compared to controls. Plaque calcification was decreased in MacTrpc3-/-/Ldlr-/- mice, and this was accompanied by marked reduction in BMP-2, Runx-2 and phospho-SMAD1/5 contents within macrophage-rich areas. Expression of Bmp-2 and Runx-2 was also reduced in bone marrow-derived macrophages from MacTrpc3-/-/Ldlr-/- mice. CONCLUSIONS: These findings show that, in advanced atherosclerosis, selective deletion of TRPC3 in macrophages favors plaque regression and impairs the activity of a novel macrophage-associated, BMP-2-dependent mechanism of calcification.


Assuntos
Aorta/metabolismo , Doenças da Aorta/metabolismo , Aterosclerose/metabolismo , Macrófagos/metabolismo , Osteogênese , Placa Aterosclerótica , Canais de Cátion TRPC/deficiência , Calcificação Vascular/metabolismo , Animais , Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/patologia , Aterosclerose/genética , Aterosclerose/patologia , Aterosclerose/prevenção & controle , Proteína Morfogenética Óssea 2/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Feminino , Macrófagos/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Receptores de LDL/deficiência , Receptores de LDL/genética , Transdução de Sinais , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Canais de Cátion TRPC/genética , Calcificação Vascular/genética , Calcificação Vascular/patologia , Calcificação Vascular/prevenção & controle
5.
Biochem Biophys Res Commun ; 491(1): 154-158, 2017 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-28711495

RESUMO

Mechanisms mediating vascular calcification recapitulate osteogenic processes encompassing bone formation and imply participation of bone related proteins such as bone morphogenetic protein-2 (BMP-2). Macrophages are amongst the cells that contribute to vascular ossification by releasing cytokines that induce an osteogenic program in vascular smooth muscle cells, and also by becoming themselves osteoclast-like cells. In inflammatory vascular disease, the macrophage population in the vascular wall is diverse, with the M1 or inflammatory, and the M2 or anti-inflammatory macrophage types being dominant. Yet, the osteogenic potential of M1 and M2 macrophages remains unknown. Prompted by recent studies from our laboratory showing that in macrophages the Transient Receptor Potential Canonical 3 (TRPC3) channel contributes to endoplasmic reticulum (ER) stress-induced apoptosis in M1, but not in M2 macrophages, and given the strong relationship between ER stress and vascular calcification, we wished to examine whether TRPC3 would play a role in the osteogenic signaling of polarized macrophages. The findings reported here indicate that a constitutive BMP-2-dependent signaling operates in M1 macrophages, which is not affected by deletion of Trpc3 and is not subject to regulation by ER stress. Our studies suggest operation of an auto/paracrine mechanism by which BMP-2 secreted by M1 macrophages maintains constitutive activation of a BMP-2 receptor/SMAD1/5 signaling axis.


Assuntos
Comunicação Autócrina/fisiologia , Proteína Morfogenética Óssea 2/metabolismo , Macrófagos/metabolismo , Osteogênese/fisiologia , Comunicação Parácrina/fisiologia , Canais de Cátion TRPC/metabolismo , Animais , Células Cultivadas , Estresse do Retículo Endoplasmático/fisiologia , Camundongos , Camundongos Transgênicos
6.
Sci Rep ; 7: 42526, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-28186192

RESUMO

In previous work we reported that ApoeKO mice transplanted with bone marrow cells deficient in the Transient Receptor Potential Canonical 3 (TRPC3) channel have reduced necrosis and number of apoptotic macrophages in advanced atherosclerotic plaques. Also, in vitro studies with polarized macrophages derived from mice with macrophage-specific loss of TRPC3 showed that M1, but not M2 macrophages, deficient in Trpc3 are less susceptible to ER stress-induced apoptosis than Trpc3 expressing cells. The questions remained (a) whether the plaque phenotype in transplanted mice resulted from a genuine effect of Trpc3 on macrophages, and (b) whether the reduced necrosis and macrophage apoptosis in plaques of these mice was a manifestation of the selective effect of TRPC3 on apoptosis of M1 macrophages previously observed in vitro. Here, we addressed these questions using Ldlr knockout (Ldlr-/-) mice with macrophage-specific loss of Trpc3 (MacTrpc3-/-/Ldlr-/- → Ldlr-/-). Compared to controls, we observed decreased plaque necrosis and number of apoptotic macrophages in MacTrpc3-/-/Ldlr-/- → Ldlr-/- mice. Immunohistochemical analysis revealed a reduction in apoptotic M1, but not apoptotic M2 macrophages. These findings confirm an effect of TRPC3 on plaque necrosis and support the notion that this is likely a reflection of the reduced susceptibility of Trpc3-deficient M1 macrophages to apoptosis.


Assuntos
Apoptose/genética , Macrófagos/metabolismo , Necrose/genética , Placa Aterosclerótica/etiologia , Placa Aterosclerótica/metabolismo , Canais de Cátion TRPC/deficiência , Animais , Aterosclerose/etiologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Biomarcadores , Modelos Animais de Doenças , Feminino , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Placa Aterosclerótica/patologia , Receptores de LDL/genética
7.
Am J Physiol Cell Physiol ; 307(6): C521-31, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25031020

RESUMO

Endoplasmic reticulum (ER) stress is a prominent mechanism of macrophage apoptosis in advanced atherosclerotic lesions. Recent studies from our laboratory showed that advanced atherosclerotic plaques in Apoe(-/-) mice with bone marrow deficiency of the calcium-permeable channel Transient Receptor Potential Canonical 3 (TRPC3) are characterized by reduced areas of necrosis and fewer apoptotic macrophages than animals transplanted with Trpc3(+/+) bone marrow. In vitro, proinflammatory M1 but not anti-inflammatory M2 macrophages derived from Trpc3(-/-)Apoe(-/-) animals exhibited reduced ER stress-induced apoptosis. However, whether this was due to a specific effect of TRPC3 deficiency on macrophage ER stress signaling remained to be determined. In the present work we used polarized macrophages derived from mice with macrophage-specific deficiency of TRPC3 to examine the expression level of ER stress markers and the activation status of some typical mediators of macrophage apoptosis. We found that the reduced susceptibility of TRPC3-deficient M1 macrophages to ER stress-induced apoptosis correlates with an impaired unfolded protein response (UPR), reduced mitochondrion-dependent apoptosis, and reduced activation of the proapoptotic molecules calmodulin-dependent protein kinase II and signal transducer and activator of transcription 1. Notably, none of these pathways was altered in TRPC3-deficient M2 macrophages. These findings show for the first time an obligatory requirement for a member of the TRPC family of cation channels in ER stress-induced apoptosis in macrophages, underscoring a rather selective role of the TRPC3 channel on mechanisms related to the UPR signaling in M1 macrophages.


Assuntos
Apoptose , Estresse do Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Macrófagos/metabolismo , Canais de Cátion TRPC/deficiência , Resposta a Proteínas não Dobradas , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Diferenciação Celular , Células Cultivadas , Retículo Endoplasmático/patologia , Macrófagos/patologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais , Canais de Cátion TRPC/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...