Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37959947

RESUMO

In this work, the effect of prewetting native and electron beam-modified wool on the resulting sorption of Cu(II) from wool solutions was studied. The following conditions and combinations were applied: 6 mM and 50 mM solutions, prewetting time 0-24 h, contact time 1-24 h. The sorption results showed that wetting the wool before sorption from the low concentrated solution can fundamentally improve the efficiency of the separation process. The opposite result was achieved when applying a more concentrated solution; that is, prewetting slightly reduced the sorptivity. The reasons for such results are discussed. The application of these findings can be used to optimize the separation process in technological practice, however, will require solute specification.

2.
Materials (Basel) ; 16(12)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37374656

RESUMO

The paper deals with the dilatometric study of high-alloy martensitic tool steel with the designation M398 (BÖHLER), which is produced by the powder metallurgy process. These materials are used to produce screws for injection molding machines in the plastic industry. Increasing the life cycle of these screws leads to significant economic savings. This contribution focuses on creating the CCT diagram of the investigated powder steel in the range of cooling rates from 100 to 0.01 °C/s. JMatPro® API v7.0 simulation software was used to compare the experimentally measured CCT diagram. The measured dilatation curves were confronted with a microstructural analysis, which was evaluated using a scanning electron microscope (SEM). The M398 material contains a large number of carbide particles that occur in the form of M7C3 and MC and are based on Cr and V. EDS analysis was used to evaluate the distribution of selected chemical elements. A comparison of the surface hardness of all samples in relation to the given cooling rates was also carried out. Subsequently, the nanoindentation properties of the formed individual phases as well as the carbides, where the nanohardness and reduced modulus of elasticity (carbides and matrix) were evaluated.

3.
Materials (Basel) ; 17(1)2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38203981

RESUMO

Experiments with changes in motion geometry can provide valuable data for engineering and development purposes, allowing a better understanding of the influence of tribological factors on the performance and service life of joints. The presented subject article focused on the experimental investigation of the influence of the geometry of the movement of the friction process on the change in the tribological properties of 30CrNiMo8 steel. The friction process was carried out without the use of a lubricant in contact with a steel ball of G40 material with a diameter of 4.76 mm. The steel ball performed two types of movement on the surface of the experimental material. The first method used was ball on disc, in which the ball moved reciprocally in an oval direction at an angle of 180° on a circumferential length of 35 mm at a speed of 5 mm/s. The second method consists of the same input parameters of the measurement, with the difference that the path along which the ball moved had a linear character. The load during the experiment was set at a constant value of 50 N with 1000 repetitions. The results show that with the ball on disc method, there was an increase in wear by 147% compared to the linear test method, which was approximately a coefficient of increase in wear of 2.468. EDS analysis pointed to the occurrence of oxidative wear that affected the resulting COF values, which were lower by 8% when using the ball on disc method due to a more uniform distribution of O and C on the surface of the friction groove where these elements acted as solid microlubricants. With the ball on disc method, defects in the form of microcracks occurred, which affected the reduction in the values of the depth of the affected area of microhardness.

4.
Materials (Basel) ; 15(13)2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35806782

RESUMO

The application of DCSBD (Diffuse Coplanar Surface Barrier Discharge) plasma is referred to as the surface modification/activation of materials. The exposure of material surfaces to DCSBD plasma is initiated by changes in their chemical composition, surface wettability and roughness. The given study presents the mentioned plasma application in the context of the modification of the material viscoelastic properties, namely the PVC polymer film. The measurement of viscoelastic properties changes of PVC was primarily examined by a sensitive thermal method of dynamic-mechanical analysis. This analysis allows identifying changes in the glass transition temperature of PVC, before and after DCSBD plasma application, Tangens Delta, supported by glass transition temperatures of Elastic and Loss modulus. The results of the present study prove that DCSBD plasma applied on both sides to PVC surfaces causes changes in its viscoelastic properties. In addition, these changes are presented depending on the variability of the material position, with respect to the winding of the electrodes in the ceramic dielectric generating the DCSBD plasma during modification. The variability of the PVC position holds an important role, as it determines the proportion of filamentous and diffuse components of the plasma that will interact with the material surface during modification. The application of DCSBD plasma must, therefore, be considered a complex modification of the material, and as a result, non-surface changes must also be considered.

5.
Materials (Basel) ; 15(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35268981

RESUMO

The present work deals with the dilatometric study of a hot-rolled 0.2C3Mn1.5Si lean medium Mn steel, mainly suitable for the quenching and partitioning (Q&P) heat treatment in both hot-rolled or cold-rolled condition, subjected to a variation of austenitization temperature. These investigations were performed in a temperature range of 800-1200 °C. In this context, the martensite transformation start temperature (Ms) was determined as a function of austenitization temperature and in turn obtained prior austenite grain size (PAGS). The results show rise in prior austenite grain size due to increasing austenitization temperature, resulting in elevated Ms temperatures. Measured dilatation curves were confronted with the metallographic analysis by means of scanning electron microscopy (SEM). The present paper also focuses on the construction of a continuous cooling transformation (CCT) and deformation continuous cooling transformation (DCCT) diagram of the investigated lean medium Mn steel in a range of cooling rates from 100 to 0.01 °C/s and their subsequent comparison. By comparing these two diagrams, we observed an overall shift of the DCCT diagram to shorter times compared to the CCT diagram, which represents an earlier formation of phase transformations with respect to the individual cooling rates. Moreover, the determination of individual phase fractions in the CCT and DCCT mode revealed that the growth stage of ferrite and bainite is decelerated by deformation, especially for intermediate cooling rates. Microstructural changes corresponding to cooling were also observed using SEM to provide more detailed investigation of the structure and present phases identification as a function of cooling rate. Moreover, the volume fractions obtained from the saturation magnetization method (SMM) are compared with data from X-ray diffraction (XRD) measurements. The discussion of the data suggests that magnetization measurements lead to more reliable results and a more sensitive detection of the retained austenite than XRD measurements. In that regard, the volume fraction of retained austenite increased with a decrease of cooling rate as a result of larger volume fraction of ferrite and bainite. The hardness of the samples subjected to the deformation was slightly higher compared to non-deformed samples. The reason for this was an evident grain refinement after deformation.

6.
Materials (Basel) ; 14(7)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33806165

RESUMO

High-strength screws represent one of the main joining or fastening components which are commonly used in the process of installation of frame constructions for information boards or signposts, relating to the traffic roads. The control of the production process may not always be a sufficient method for ensuring road safety. The backward investigation and control of the screw material processing seems to be the one of the most important procedures when there is the occurrence of any failure during the operation of the screw. This paper is mainly focused on the analysis of the failure of the high-strength screw of 10.9 grade with M diameter of 27 × 3 and a shank length of 64 mm. The mentioned and investigated screw was used as a fastener in a highway frame construction. In the paper, there is mainly the analysis of the material for a broken screw in terms of the material micropurity, the material microstructure, the surface treatment as well as chemical composition. The evaluation was based on investigation by optical microscopy, scanning electron microscopy and energy dispersive spectroscopy. Important knowledge and results were also obtained due to information on micromorphology and material contrast of the fracture surface resulting from fractographic analysis, using the method of scanning electron microscopy. In the case of the production of the high-strength screws, the tempering stands for the decisive or crucial process of heat treatment because the given process can ensure a decrease in hardness, while the required ductile properties of the material are kept and this is also reflected in the increase of strength and micromorphology of the fracture surface. From the aspect of micropurity, inclusions of critical size or distribution were not identified in the material, referring to Czech standard CSN ISO 4967 (420471). The microstructure corresponds to tempered martensite, but the fracture surface of the broken screw was based on an intercrystalline micromechanism, which is undesirable for the given type of component. Combined with the measurement of the HV1 (Vickers hardness at a load of 1 kg) from the edge to the central area of the screw, the analysis revealed the significant drawbacks in the heat treatment of the high-strength screw.

7.
Materials (Basel) ; 13(23)2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33297542

RESUMO

The paper is focused on investigation of the high-strength AISI 4340 steel at various temperature and deformation conditions. The article is divided into two specific analyses. The first is to examine the dilatation behavior of the steel at eight different cooling rates, namely, 100, 10, 5, 1, 0.5, 0.1, 0.05 and 0.01 °C·s-1. The mapping of the phase transformations due to varying cooling rates from the austenitizing temperature of 850 °C allows the construction of the CCT diagram for a given high-strength steel. These dilatation curves were also compared with the metallography of the selected samples for the proper construction of the CCT diagram. A further analysis of the high temperature deformation of high strength steel AISI 4340 was performed in the range of temperature 900-1200 °C, and the strain rate was in the range from 0.001 to 10 s-1 with maximum value of the true strain 0.9. Changes in the microstructure were observed using light optical microscopy (LOM). The effect of hot deformation temperature on true stress, peak stress and true strain was investigated. The hardness of all deformed samples, depending on the temperature, the deformation rate and the peak stress σp overall together related with hardness, has also been evaluated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...