Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Electrophoresis ; 44(7-8): 725-732, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36774545

RESUMO

Polydimethylsiloxane (PDMS) based microfluidic devices have found increasing utility for electrophoretic and electrokinetic assays because of their ease of fabrication using replica molding. However, the fabrication of high-resolution molds for replica molding still requires the resource-intensive and time-consuming photolithography process, which precludes quick design iterations and device optimization. We here demonstrate a low-cost, rapid microfabrication process, based on electrohydrodynamic jet printing (EJP), for fabricating non-sacrificial master molds for replica molding of PDMS microfluidic devices. The method is based on the precise deposition of an electrically stretched polymeric solution of polycaprolactone in acetic acid on a silicon wafer placed on a computer-controlled motion stage. This process offers the high-resolution (order 10  µ $\umu$ m) capability of photolithography and rapid prototyping capability of inkjet printing to print high-resolution templates for elastomeric microfluidic devices within a few minutes. Through proper selection of the operating parameters such as solution flow rate, applied electric field, and stage speed, we demonstrate microfabrication of intricate master molds and corresponding PDMS microfluidic devices for electrokinetic applications. We demonstrate the utility of the fabricated PDMS microchips for nonlinear electrokinetic processes such as electrokinetic instability and controlled sample splitting in ITP. The ability to rapid prototype customized reusable master molds with order 10  µ $\umu$ m resolution within a few minutes can help in designing and optimizing microfluidic devices for various electrokinetic applications.


Assuntos
Dimetilpolisiloxanos , Microtecnologia , Dispositivos Lab-On-A-Chip , Polímeros
2.
Electrophoresis ; 41(7-8): 570-577, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31661562

RESUMO

Current monitoring method for measurement of EOF in microchannels involves measurement of time-varying current while an electrolyte displaces another electrolyte having different conductivity due to EOF. The basic premise of the current monitoring method is that an axial gradient in conductivity of a binary electrolyte in a microchannel advects only due to EOF. In the current work, using theory and experiments, we show that this assumption is not valid for low concentration electrolytes and narrow microchannels wherein surface conduction is comparable with bulk conduction. We show that in presence of surface conduction, a gradient in conductivity of binary electrolyte not only advects with EOF but also undergoes electromigration. This electromigration phenomenon is nonlinear and is characterized by propagation of shock and rarefaction waves in ion concentrations. Consequently, in presence of surface conduction, the current-time relationships for forward and reverse displacement in the current monitoring method are asymmetric and the displacement time is also direction dependent. To quantify the effect of surface conduction, we present analytical expressions for current-time relationship in the regime when surface conduction is comparable to bulk conduction. We validate these relations with experimental data by performing a series of current monitoring experiments in a glass microfluidic chip at low electrolyte concentrations. The experimentally validated analytical expressions for current-time relationships presented in this work can be used to correctly estimate EOF using the current monitoring method when surface conduction is not negligible.


Assuntos
Eletro-Osmose/métodos , Condutividade Elétrica , Eletrólitos/química , Técnicas Analíticas Microfluídicas/métodos , Propriedades de Superfície
3.
Electrophoresis ; 40(5): 730-739, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30628102

RESUMO

Field amplified sample stacking (FASS) uses differential electrophoretic velocity of analyte ions in the high-conductivity background electrolyte zone and low conductivity sample zone for increasing the analyte concentration. The stacking rate of analyte ions in FASS is limited by molecular diffusion and convective dispersion due to nonuniform electroosmotic flow (EOF). We present a theoretical scaling analysis of stacking dynamics in FASS and its validation with a large set of on-chip sample stacking experiments and numerical simulations. Through scaling analysis, we have identified two stacking regimes that are relevant for on-chip FASS, depending upon whether the broadening of the stacked peak is dominated by axial diffusion or convective dispersion. We show that these two regimes are characterized by distinct length and time scales, based on which we obtain simplified nondimensional relations for the temporal growth of peak concentration and width in FASS. We first verify the theoretical scaling behavior in diffusion- and convection-dominated regimes using numerical simulations. Thereafter, we show that the experimental data of temporal growth of peak concentration and width at varying electric fields, conductivity gradients, and EOF exhibit the theoretically predicted scaling behavior. The scaling behavior described in this work provides insights into the effect of varying experimental parameters, such as electric field, conductivity gradient, electroosmotic mobility, and electrophoretic mobility of the analyte on the dynamics of on-chip FASS.


Assuntos
Eletroforese Capilar/métodos , Condutividade Elétrica , Eletrólitos/química , Eletro-Osmose , Modelos Químicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...