Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metabolites ; 6(2)2016 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-27258318

RESUMO

Metabolite structure identification remains a significant challenge in nontargeted metabolomics research. One commonly used strategy relies on searching biochemical databases using exact mass. However, this approach fails when the database does not contain the unknown metabolite (i.e., for unknown-unknowns). For these cases, constrained structure generation with combinatorial structure generators provides a potential option. Here we evaluated structure generation constraints based on the specification of: (1) substructures required (i.e., seed structures); (2) substructures not allowed; and (3) filters to remove incorrect structures. Our approach (database assisted structure identification, DASI) used predictive models in MolFind to find candidate structures with chemical and physical properties similar to the unknown. These candidates were then used for seed structure generation using eight different structure generation algorithms. One algorithm was able to generate correct seed structures for 21/39 test compounds. Eleven of these seed structures were large enough to constrain the combinatorial structure generator to fewer than 100,000 structures. In 35/39 cases, at least one algorithm was able to generate a correct seed structure. The DASI method has several limitations and will require further experimental validation and optimization. At present, it seems most useful for identifying the structure of unknown-unknowns with molecular weights <200 Da.

2.
Metabolomics ; 11(3): 753-763, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25960696

RESUMO

Quantitative biases in the abundance of precursor and product ions due to mass discrimination in RF-only ion guides results in inaccurate collision induced dissociation (CID) spectra. We evaluated the effects of collision cell RF voltage and collision energy on CID spectra using ten singly protonated compounds (46-854 Da) in an orthogonal acceleration time-of-flight mass spectrometer. The relative ion transfer efficiency, i.e. the relative amount of ions transferred through the ion guide at any particular RF voltage was shown to be dependent on the ion's m/z. We developed an algorithm to correct for the mass discriminating effects of RF voltage on CID spectra. The algorithm was tested for both precursor and product ions at multiple RF voltages and collision energies in order to ensure reliability. Our results suggest that compounds that generate major product ions with m/z values <150 have peak intensities that deviate substantially from their actual abundance. This has implications for small molecule metabolomics research, particularly for studies that rely on CID spectra matching methods for structure identification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...