Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biophys J ; 98(10): 2136-46, 2010 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-20483321

RESUMO

Cell motility is important for many developmental and physiological processes. Motility arises from interactions between physical forces at the cell surface membrane and the biochemical reactions that control the actin cytoskeleton. To computationally analyze how these factors interact, we built a three-dimensional stochastic model of the experimentally observed isotropic spreading phase of mammalian fibroblasts. The multiscale model is composed at the microscopic levels of three actin filament remodeling reactions that occur stochastically in space and time, and these reactions are regulated by the membrane forces due to membrane surface resistance (load) and bending energy. The macroscopic output of the model (isotropic spreading of the whole cell) occurs due to the movement of the leading edge, resulting solely from membrane force-constrained biochemical reactions. Numerical simulations indicate that our model qualitatively captures the experimentally observed isotropic cell-spreading behavior. The model predicts that increasing the capping protein concentration will lead to a proportional decrease in the spread radius of the cell. This prediction was experimentally confirmed with the use of Cytochalasin D, which caps growing actin filaments. Similarly, the predicted effect of actin monomer concentration was experimentally verified by using Latrunculin A. Parameter variation analyses indicate that membrane physical forces control cell shape during spreading, whereas the biochemical reactions underlying actin cytoskeleton dynamics control cell size (i.e., the rate of spreading). Thus, during cell spreading, a balance between the biochemical and biophysical properties determines the cell size and shape. These mechanistic insights can provide a format for understanding how force and chemical signals together modulate cellular regulatory networks to control cell motility.


Assuntos
Movimento Celular/fisiologia , Forma Celular/fisiologia , Citocalasina D/farmacologia , Fibroblastos/fisiologia , Movimento/fisiologia , Inibidores da Síntese de Ácido Nucleico/farmacologia , Citoesqueleto de Actina/fisiologia , Actinas , Difosfato de Adenosina/farmacologia , Animais , Adesão Celular/efeitos dos fármacos , Membrana Celular/fisiologia , Polaridade Celular/fisiologia , Forma Celular/efeitos dos fármacos , Tamanho Celular , Células Cultivadas , Estruturas Celulares/efeitos dos fármacos , Citoesqueleto/fisiologia , Células Epiteliais/fisiologia , Fluidez de Membrana/fisiologia , Proteínas Motores Moleculares
2.
PLoS One ; 3(11): e3735, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19011687

RESUMO

Actin-based cell motility and force generation are central to immune response, tissue development, and cancer metastasis, and understanding actin cytoskeleton regulation is a major goal of cell biologists. Cell spreading is a commonly used model system for motility experiments -- spreading fibroblasts exhibit stereotypic, spatially-isotropic edge dynamics during a reproducible sequence of functional phases: 1) During early spreading, cells form initial contacts with the surface. 2) The middle spreading phase exhibits rapidly increasing attachment area. 3) Late spreading is characterized by periodic contractions and stable adhesions formation. While differences in cytoskeletal regulation between phases are known, a global analysis of the spatial and temporal coordination of motility and force generation is missing. Implementing improved algorithms for analyzing edge dynamics over the entire cell periphery, we observed that a single domain of homogeneous cytoskeletal dynamics dominated each of the three phases of spreading. These domains exhibited a unique combination of biophysical and biochemical parameters -- a motility module. Biophysical characterization of the motility modules revealed that the early phase was dominated by periodic, rapid membrane blebbing; the middle phase exhibited continuous protrusion with very low traction force generation; and the late phase was characterized by global periodic contractions and high force generation. Biochemically, each motility module exhibited a different distribution of the actin-related protein VASP, while inhibition of actin polymerization revealed different dependencies on barbed-end polymerization. In addition, our whole-cell analysis revealed that many cells exhibited heterogeneous combinations of motility modules in neighboring regions of the cell edge. Together, these observations support a model of motility in which regions of the cell edge exhibit one of a limited number of motility modules that, together, determine the overall motility function. Our data and algorithms are publicly available to encourage further exploration.


Assuntos
Membrana Celular/metabolismo , Movimento Celular , Fibroblastos/citologia , Animais , Apoptose/efeitos dos fármacos , Fenômenos Biomecânicos , Moléculas de Adesão Celular/metabolismo , Membrana Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Citocalasina D/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Camundongos , Proteínas dos Microfilamentos/metabolismo , Fosfoproteínas/metabolismo , Transporte Proteico/efeitos dos fármacos , Pseudópodes/efeitos dos fármacos , Pseudópodes/metabolismo
3.
Cell ; 129(4): 773-85, 2007 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-17512410

RESUMO

The immunological synapse (IS) is a junction between the T cell and antigen-presenting cell and is composed of supramolecular activation clusters (SMACs). No studies have been published on naive T cell IS dynamics. Here, we find that IS formation during antigen recognition comprises cycles of stable IS formation and autonomous naive T cell migration. The migration phase is driven by PKCtheta, which is localized to the F-actin-dependent peripheral (p)SMAC. PKCtheta(-/-) T cells formed hyperstable IS in vitro and in vivo and, like WT cells, displayed fast oscillations in the distal SMAC, but they showed reduced slow oscillations in pSMAC integrity. IS reformation is driven by the Wiscott Aldrich Syndrome protein (WASp). WASp(-/-) T cells displayed normal IS formation but were unable to reform IS after migration unless PKCtheta was inhibited. Thus, opposing effects of PKCtheta and WASp control IS stability through pSMAC symmetry breaking and reformation.


Assuntos
Apresentação de Antígeno/fisiologia , Células Apresentadoras de Antígenos/metabolismo , Junções Intercelulares/metabolismo , Isoenzimas/metabolismo , Proteína Quinase C/metabolismo , Linfócitos T/metabolismo , Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Animais , Células Apresentadoras de Antígenos/imunologia , Comunicação Celular/fisiologia , Movimento Celular/fisiologia , Ativação Enzimática/fisiologia , Inibidores Enzimáticos/farmacologia , Repressão Enzimática/efeitos dos fármacos , Repressão Enzimática/fisiologia , Junções Intercelulares/genética , Junções Intercelulares/imunologia , Isoenzimas/genética , Ativação Linfocitária/fisiologia , Lipídeos de Membrana/metabolismo , Camundongos , Camundongos Knockout , Proteína Quinase C/genética , Proteína Quinase C-theta , Linfócitos T/imunologia , Proteína da Síndrome de Wiskott-Aldrich/genética
4.
Cell ; 128(3): 561-75, 2007 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-17289574

RESUMO

Cell motility proceeds by cycles of edge protrusion, adhesion, and retraction. Whether these functions are coordinated by biochemical or biomechanical processes is unknown. We find that myosin II pulls the rear of the lamellipodial actin network, causing upward bending, edge retraction, and initiation of new adhesion sites. The network then separates from the edge and condenses over the myosin. Protrusion resumes as lamellipodial actin regenerates from the front and extends rearward until it reaches newly assembled myosin, initiating the next cycle. Upward bending, observed by evanescence and electron microscopy, results in ruffle formation when adhesion strength is low. Correlative fluorescence and electron microscopy shows that the regenerating lamellipodium forms a cohesive, separable layer of actin above the lamellum. Thus, actin polymerization periodically builds a mechanical link, the lamellipodium, connecting myosin motors with the initiation of adhesion sites, suggesting that the major functions driving motility are coordinated by a biomechanical process.


Assuntos
Actinas/metabolismo , Adesão Celular , Miosinas/metabolismo , Pseudópodes/química , Animais , Movimento Celular , Fibroblastos/citologia , Camundongos , Microscopia Eletrônica , Microscopia de Fluorescência , Miosina Tipo II/genética , Miosina Tipo II/metabolismo , Periodicidade , Polímeros/metabolismo , Pseudópodes/ultraestrutura
5.
Cell ; 127(5): 1015-26, 2006 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17129785

RESUMO

How physical force is sensed by cells and transduced into cellular signaling pathways is poorly understood. Previously, we showed that tyrosine phosphorylation of p130Cas (Cas) in a cytoskeletal complex is involved in force-dependent activation of the small GTPase Rap1. Here, we mechanically extended bacterially expressed Cas substrate domain protein (CasSD) in vitro and found a remarkable enhancement of phosphorylation by Src family kinases with no apparent change in kinase activity. Using an antibody that recognized extended CasSD in vitro, we observed Cas extension in intact cells in the peripheral regions of spreading cells, where higher traction forces are expected and where phosphorylated Cas was detected, suggesting that the in vitro extension and phosphorylation of CasSD are relevant to physiological force transduction. Thus, we propose that Cas acts as a primary force sensor, transducing force into mechanical extension and thereby priming phosphorylation and activation of downstream signaling.


Assuntos
Proteína Substrato Associada a Crk/metabolismo , Mecanotransdução Celular , Quinases da Família src/metabolismo , Anticorpos/imunologia , Fenômenos Biomecânicos , Biotinilação , Proteína Substrato Associada a Crk/química , Citoesqueleto/metabolismo , Humanos , Modelos Biológicos , Fosforilação , Fosfotirosina/metabolismo , Polietilenoglicóis/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes/metabolismo , Proteínas rap1 de Ligação ao GTP/metabolismo
6.
Phys Rev Lett ; 97(3): 038102, 2006 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-16907546

RESUMO

We have monitored active movements of the cell circumference on specifically coated substrates for a variety of cells including mouse embryonic fibroblasts and T cells, as well as wing disk cells from fruit flies. Despite having different functions and being from multiple phyla, these cell types share a common spatiotemporal pattern in their normal membrane velocity; we show that protrusion and retraction events are organized in lateral waves along the cell membrane. These wave patterns indicate both spatial and temporal long-range periodic correlations of the actomyosin gel.


Assuntos
Membrana Celular/fisiologia , Movimento Celular/fisiologia , Fibroblastos/fisiologia , Linfócitos T/fisiologia , Actomiosina/química , Actomiosina/metabolismo , Animais , Drosophila melanogaster/citologia , Drosophila melanogaster/fisiologia , Fibroblastos/citologia , Géis/química , Camundongos , Modelos Biológicos , Linfócitos T/citologia , Fatores de Tempo
7.
Science ; 309(5737): 1078-83, 2005 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-16099987

RESUMO

We developed a model of 545 components (nodes) and 1259 interactions representing signaling pathways and cellular machines in the hippocampal CA1 neuron. Using graph theory methods, we analyzed ligand-induced signal flow through the system. Specification of input and output nodes allowed us to identify functional modules. Networking resulted in the emergence of regulatory motifs, such as positive and negative feedback and feedforward loops, that process information. Key regulators of plasticity were highly connected nodes required for the formation of regulatory motifs, indicating the potential importance of such motifs in determining cellular choices between homeostasis and plasticity.


Assuntos
Hipocampo/citologia , Neurônios/fisiologia , Transdução de Sinais , Algoritmos , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Retroalimentação Fisiológica , Ácido Glutâmico/metabolismo , Hipocampo/fisiologia , Homeostase , Ligantes , Potenciação de Longa Duração , Mamíferos , Matemática , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Modelos Neurológicos , Plasticidade Neuronal , Norepinefrina/metabolismo , Proteína Quinase C/metabolismo , Receptores de AMPA/metabolismo , Software , Biologia de Sistemas
8.
J Appl Physiol (1985) ; 98(4): 1542-6, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15772064

RESUMO

Cellular morphology is determined by motility, force sensing, and force generation that must be finely controlled in a dynamic fashion. Contractile and extensile functions are integrated with the overall cytoskeleton, including linkages from the cytoplasmic cytoskeleton to the extracellular matrix and other cells by force sensing. During development, as cells differentiate, variations in protein expression levels result in morphological changes. There are two major explanations for motile behavior: either cellular motility depends in a continuous fashion on cell composition or it exhibits phases wherein only a few protein modules are activated locally for a given time. Indeed, in support of the latter model, the quantification of cell spreading and other motile activities shows multiple distinct modes of behavior, which we term "phases" because there exist abrupt transitions between them. Cells in suspension have a basal level of motility that enables them to probe their immediate environment. After contacting a matrix-coated surface, they rapidly transition to an activated spreading phase. After the development of a significant contact area, the cells contract repeatedly to determine the rigidity of the substrate and then develop force on matrix contacts. When cells are fully spread, extension activity is significantly decreased and focal complexes start to assemble near the cell periphery. For each of these phases, there are significant differences in protein activities, which correspond to differences in function. Thus overall morphological change of a tissue is driven by chemical signals and force-dependent activation of one or more motile phases in limited cell regions for defined periods.


Assuntos
Adesão Celular/fisiologia , Movimento Celular/fisiologia , Fenômenos Fisiológicos Celulares , Proliferação de Células , Matriz Extracelular/fisiologia , Mecanotransdução Celular/fisiologia , Animais , Humanos , Estresse Mecânico
9.
Phys Rev Lett ; 93(10): 108105, 2004 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-15447457

RESUMO

We monitored isotropic spreading of mouse embryonic fibroblasts on fibronectin-coated substrates. Cell adhesion area versus time was measured via total internal reflection fluorescence microscopy. Spreading proceeds in well-defined phases. We found a power-law area growth with distinct exponents in three sequential phases, which we denote as basal, continuous, and contractile spreading. High resolution differential interference contrast microscopy was used to characterize local membrane dynamics at the spreading front. Fourier power spectra of membrane velocity reveal the sudden development of periodic membrane retractions at the transition from continuous to contractile spreading. We propose that the classification of cell spreading into phases with distinct functional characteristics and protein activity serves as a paradigm for a general program of a phase classification of cellular phenotype.


Assuntos
Membrana Celular/fisiologia , Movimento Celular/fisiologia , Fibroblastos/citologia , Fibroblastos/fisiologia , Fluidez de Membrana/fisiologia , Modelos Biológicos , Proteínas Motores Moleculares/fisiologia , Animais , Adesão Celular/fisiologia , Divisão Celular/fisiologia , Células Cultivadas , Simulação por Computador , Fibronectinas/fisiologia , Camundongos
10.
Cell ; 116(3): 431-43, 2004 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-15016377

RESUMO

Cellular lamellipodia bind to the matrix and probe its rigidity through forces generated by rearward F-actin transport. Cells respond to matrix rigidity by moving toward more rigid matrices using an unknown mechanism. In spreading and migrating cells we find local periodic contractions of lamellipodia that depend on matrix rigidity, fibronectin binding and myosin light chain kinase (MLCK). These contractions leave periodic rows of matrix bound beta3-integrin and paxillin while generating waves of rearward moving actin bound alpha-actinin and MLCK. The period between contractions corresponds to the time for F-actin to move across the lamellipodia. Shortening lamellipodial width by activating cofilin decreased this period proportionally. Increasing lamellipodial width by Rac signaling activation increased this period. We propose that an actin bound, contraction-activated signaling complex is transported locally from the tip to the base of the lamellipodium, activating the next contraction/extension cycle.


Assuntos
Actinas/metabolismo , Movimento Celular/fisiologia , Periodicidade , Pseudópodes/metabolismo , Fatores de Despolimerização de Actina , Actinina/metabolismo , Animais , Linhagem Celular , Proteínas do Citoesqueleto/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos , Fibronectinas/metabolismo , Integrina beta3/metabolismo , Substâncias Macromoleculares , Camundongos , Proteínas dos Microfilamentos/metabolismo , Modelos Biológicos , Quinase de Cadeia Leve de Miosina/metabolismo , Paxilina , Fosfoproteínas/metabolismo , Ligação Proteica/fisiologia , Transporte Proteico/fisiologia , Pseudópodes/ultraestrutura , Proteínas rac de Ligação ao GTP/metabolismo
11.
Biophys J ; 86(3): 1794-806, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14990505

RESUMO

When mouse embryonic fibroblasts in suspension contact a matrix-coated surface, they rapidly adhere and spread. Using total internal reflection fluorescence microscopy of dye-loaded fibroblasts to quantify cell-substrate contact, we found that increasing the surface matrix density resulted in faster spreading initiation whereas lamellipodial dynamics during spreading were unaltered. After spreading initiation, most cells spread in an anisotropic manner through stochastic, transient extension periods (STEPs) with approximately 30 STEPs over 10 min to reach an area of 1300 micro m(2) +/- 300 micro m(2). A second mode of spreading, increased in serum-deprived cells, lacked STEPs and spread in a rapid, isotropic manner for 1-4 min. This isotropic mode was characterized by a high rate of area increase, 340 micro m(2)/min with 78% of the cell edge extending. Anisotropic cells spread slower via STEPs, 126 micro m(2)/min with 34% of the edge extending. During the initial 2-4 min of fast, isotropic spreading, centripetal flow of actin was low (0.8 micro m/min) whereas in anisotropic cells it was high from early times (4.7 micro m/min). After initial isotropic spreading, rearward actin movement increased and isotropic cells displayed STEPs similar to anisotropic cells. Thus, the two cell states display dramatically different spreading whereas long-term motility is based on STEPs.


Assuntos
Adesão Celular/fisiologia , Movimento Celular/fisiologia , Fibroblastos/citologia , Fibroblastos/fisiologia , Interpretação de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência/métodos , Actinina/fisiologia , Actinina/ultraestrutura , Animais , Anisotropia , Células Cultivadas , Matriz Extracelular/fisiologia , Camundongos , Proteínas Motores Moleculares/fisiologia , Proteínas Motores Moleculares/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...