Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
1.
Cell Rep ; 43(6): 114289, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38833371

RESUMO

Type I interferon (IFN-I) and IFN-γ foster antitumor immunity by facilitating T cell responses. Paradoxically, IFNs may promote T cell exhaustion by activating immune checkpoints. The downstream regulators of these disparate responses are incompletely understood. Here, we describe how interferon regulatory factor 1 (IRF1) orchestrates these opposing effects of IFNs. IRF1 expression in tumor cells blocks Toll-like receptor- and IFN-I-dependent host antitumor immunity by preventing interferon-stimulated gene (ISG) and effector programs in immune cells. In contrast, expression of IRF1 in the host is required for antitumor immunity. Mechanistically, IRF1 binds distinctly or together with STAT1 at promoters of immunosuppressive but not immunostimulatory ISGs in tumor cells. Overexpression of programmed cell death ligand 1 (PD-L1) in Irf1-/- tumors only partially restores tumor growth, suggesting multifactorial effects of IRF1 on antitumor immunity. Thus, we identify that IRF1 expression in tumor cells opposes host IFN-I- and IRF1-dependent antitumor immunity to facilitate immune escape and tumor growth.

2.
Cancer Res Commun ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856716

RESUMO

Accurate diagnosis of lung cancer is important for treatment decision-making. Tumor biopsy and histological examination is the standard for determining histological lung cancer subtypes. Liquid biopsy, particularly cell-free DNA (cfDNA), has recently shown promising results in cancer detection and classification. In this study, we investigate the potential of cfDNA methylome for the noninvasive classification of lung cancer histological subtypes. We focused on the two most prevalent lung cancer subtypes, lung adenocarcinoma and lung squamous cell carcinoma. Using a fragment-based marker discovery approach, we identified robust subtype-specific methylation markers from tumor samples. These markers were successfully validated in independent cohorts and associated with subtype-specific transcriptional activity. Leveraging these markers, we constructed a subtype classification model using cfDNA methylation profiles, achieving an AUC of 0.808 in cross-validation and an AUC of 0.747 in the independent validation. Tumor copy number alterations inferred from cfDNA methylome analysis revealed potential for treatment selection. In summary, our study demonstrates the potential of cfDNA methylome analysis for noninvasive lung cancer subtyping, offering insights for cancer monitoring and early detection.

4.
Cell Rep Med ; 5(4): 101479, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38518770

RESUMO

Immune checkpoint blockade (ICB) with PD-1/PD-L1 inhibition has revolutionized the treatment of non-small cell lung cancer (NSCLC). Durable responses, however, are observed only in a subpopulation of patients. Defective antigen presentation and an immunosuppressive tumor microenvironment (TME) can lead to deficient T cell recruitment and ICB resistance. We evaluate intratumoral (IT) vaccination with CXCL9- and CXCL10-engineered dendritic cells (CXCL9/10-DC) as a strategy to overcome resistance. IT CXCL9/10-DC leads to enhanced T cell infiltration and activation in the TME and tumor inhibition in murine NSCLC models. The antitumor efficacy of IT CXCL9/10-DC is dependent on CD4+ and CD8+ T cells, as well as CXCR3-dependent T cell trafficking from the lymph node. IT CXCL9/10-DC, in combination with ICB, overcomes resistance and establishes systemic tumor-specific immunity in murine models. These studies provide a mechanistic understanding of CXCL9/10-DC-mediated host immune activation and support clinical translation of IT CXCL9/10-DC to augment ICB efficacy in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Camundongos , Animais , Linfócitos T CD8-Positivos , Inibidores de Checkpoint Imunológico , Células Dendríticas , Microambiente Tumoral , Quimiocina CXCL9
6.
Nature ; 627(8004): 656-663, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38418883

RESUMO

Understanding the cellular processes that underlie early lung adenocarcinoma (LUAD) development is needed to devise intervention strategies1. Here we studied 246,102 single epithelial cells from 16 early-stage LUADs and 47 matched normal lung samples. Epithelial cells comprised diverse normal and cancer cell states, and diversity among cancer cells was strongly linked to LUAD-specific oncogenic drivers. KRAS mutant cancer cells showed distinct transcriptional features, reduced differentiation and low levels of aneuploidy. Non-malignant areas surrounding human LUAD samples were enriched with alveolar intermediate cells that displayed elevated KRT8 expression (termed KRT8+ alveolar intermediate cells (KACs) here), reduced differentiation, increased plasticity and driver KRAS mutations. Expression profiles of KACs were enriched in lung precancer cells and in LUAD cells and signified poor survival. In mice exposed to tobacco carcinogen, KACs emerged before lung tumours and persisted for months after cessation of carcinogen exposure. Moreover, they acquired Kras mutations and conveyed sensitivity to targeted KRAS inhibition in KAC-enriched organoids derived from alveolar type 2 (AT2) cells. Last, lineage-labelling of AT2 cells or KRT8+ cells following carcinogen exposure showed that KACs are possible intermediates in AT2-to-tumour cell transformation. This study provides new insights into epithelial cell states at the root of LUAD development, and such states could harbour potential targets for prevention or intervention.


Assuntos
Adenocarcinoma de Pulmão , Diferenciação Celular , Células Epiteliais , Neoplasias Pulmonares , Animais , Humanos , Camundongos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Aneuploidia , Carcinógenos/toxicidade , Células Epiteliais/classificação , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Organoides/efeitos dos fármacos , Organoides/metabolismo , Lesões Pré-Cancerosas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Taxa de Sobrevida , Produtos do Tabaco/efeitos adversos , Produtos do Tabaco/toxicidade
7.
Cancer Res ; 84(2): 305-327, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-37934116

RESUMO

Increased utilization of glucose is a hallmark of cancer. Sodium-glucose transporter 2 (SGLT2) is a critical player in glucose uptake in early-stage and well-differentiated lung adenocarcinoma (LUAD). SGLT2 inhibitors, which are FDA approved for diabetes, heart failure, and kidney disease, have been shown to significantly delay LUAD development and prolong survival in murine models and in retrospective studies in diabetic patients, suggesting that they may be repurposed for lung cancer. Despite the antitumor effects of SGLT2 inhibition, tumors eventually escape treatment. Here, we studied the mechanisms of resistance to glucose metabolism-targeting treatments. Glucose restriction in LUAD and other tumors induced cancer cell dedifferentiation, leading to a more aggressive phenotype. Glucose deprivation caused a reduction in alpha-ketoglutarate (αKG), leading to attenuated activity of αKG-dependent histone demethylases and histone hypermethylation. The dedifferentiated phenotype depended on unbalanced EZH2 activity that suppressed prolyl-hydroxylase PHD3 and increased expression of hypoxia-inducible factor 1α (HIF1α), triggering epithelial-to-mesenchymal transition. Finally, a HIF1α-dependent transcriptional signature of genes upregulated by low glucose correlated with prognosis in human LUAD. Overall, this study furthers current knowledge of the relationship between glucose metabolism and cell differentiation in cancer, characterizing the epigenetic adaptation of cancer cells to glucose deprivation and identifying targets to prevent the development of resistance to therapies targeting glucose metabolism. SIGNIFICANCE: Epigenetic adaptation allows cancer cells to overcome the tumor-suppressive effects of glucose restriction by inducing dedifferentiation and an aggressive phenotype, which could help design better metabolic treatments.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Camundongos , Animais , Glucose/metabolismo , Transportador 2 de Glucose-Sódio , Estudos Retrospectivos , Neoplasias Pulmonares/genética
8.
Cells ; 12(19)2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37830618

RESUMO

Non-small-cell lung cancer (NSCLC) remains one of the leading causes of death worldwide. While NSCLCs possess antigens that can potentially elicit T cell responses, defective tumor antigen presentation and T cell activation hinder host anti-tumor immune responses. The NSCLC tumor microenvironment (TME) is composed of cellular and soluble mediators that can promote or combat tumor growth. The composition of the TME plays a critical role in promoting tumorigenesis and dictating anti-tumor immune responses to immunotherapy. Dendritic cells (DCs) are critical immune cells that activate anti-tumor T cell responses and sustain effector responses. DC vaccination is a promising cellular immunotherapy that has the potential to facilitate anti-tumor immune responses and transform the composition of the NSCLC TME via tumor antigen presentation and cell-cell communication. Here, we will review the features of the NSCLC TME with an emphasis on the immune cell phenotypes that directly interact with DCs. Additionally, we will summarize the major preclinical and clinical approaches for DC vaccine generation and examine how effective DC vaccination can transform the NSCLC TME toward a state of sustained anti-tumor immune signaling.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Microambiente Tumoral , Antígenos de Neoplasias/metabolismo , Vacinação , Células Dendríticas
9.
J Immunother Cancer ; 11(9)2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37730274

RESUMO

BACKGROUND: Despite recent advances in immunotherapy, many patients with non-small cell lung cancer (NSCLC) do not respond to immune checkpoint inhibitors (ICI). Resistance to ICI may be driven by suboptimal priming of antitumor T lymphocytes due to poor antigen presentation as well as their exclusion and impairment by the immunosuppressive tumor microenvironment (TME). In a recent phase I trial in patients with NSCLC, in situ vaccination (ISV) with dendritic cells engineered to secrete CCL21 (CCL21-DC), a chemokine that facilitates the recruitment of T cells and DC, promoted T lymphocyte tumor infiltration and PD-L1 upregulation. METHODS: Murine models of NSCLC with distinct driver mutations (KrasG12D/P53+/-/Lkb1-/- (KPL); KrasG12D/P53+/- (KP); and KrasG12D (K)) and varying tumor mutational burden were used to evaluate the efficacy of combination therapy with CCL21-DC ISV plus ICI. Comprehensive analyses of longitudinal preclinical samples by flow cytometry, single cell RNA-sequencing (scRNA-seq) and whole-exome sequencing were performed to assess mechanisms of combination therapy. RESULTS: ISV with CCL21-DC sensitized immune-resistant murine NSCLCs to ICI and led to the establishment of tumor-specific immune memory. Immunophenotyping revealed that CCL21-DC obliterated tumor-promoting neutrophils, promoted sustained infiltration of CD8 cytolytic and CD4 Th1 lymphocytes and enriched progenitor T cells in the TME. Addition of ICI to CCL21-DC further enhanced the expansion and effector function of T cells both locally and systemically. Longitudinal evaluation of tumor mutation profiles revealed that CCL21-DC plus ICI induced immunoediting of tumor subclones, consistent with the broadening of tumor-specific T cell responses. CONCLUSIONS: CCL21-DC ISV synergizes with anti-PD-1 to eradicate murine NSCLC. Our data support the clinical application of CCL21-DC ISV in combination with checkpoint inhibition for patients with NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Proteínas Proto-Oncogênicas p21(ras) , Proteína Supressora de Tumor p53 , Neoplasias Pulmonares/tratamento farmacológico , Imunoterapia , Microambiente Tumoral , Quimiocina CCL21
10.
Cancer Res ; 83(19): 3305-3319, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37477508

RESUMO

A greater understanding of molecular, cellular, and immunological changes during the early stages of lung adenocarcinoma development could improve diagnostic and therapeutic approaches in patients with pulmonary nodules at risk for lung cancer. To elucidate the immunopathogenesis of early lung tumorigenesis, we evaluated surgically resected pulmonary nodules representing the spectrum of early lung adenocarcinoma as well as associated normal lung tissues using single-cell RNA sequencing and validated the results by flow cytometry and multiplex immunofluorescence (MIF). Single-cell transcriptomics revealed a significant decrease in gene expression associated with cytolytic activities of tumor-infiltrating natural killer and natural killer T cells. This was accompanied by a reduction in effector T cells and an increase of CD4+ regulatory T cells (Treg) in subsolid nodules. An independent set of resected pulmonary nodules consisting of both adenocarcinomas and associated premalignant lesions corroborated the early increment of Tregs in premalignant lesions compared with the associated normal lung tissues by MIF. Gene expression analysis indicated that cancer-associated alveolar type 2 cells and fibroblasts may contribute to the deregulation of the extracellular matrix, potentially affecting immune infiltration in subsolid nodules through ligand-receptor interactions. These findings suggest that there is a suppression of immune surveillance across the spectrum of early-stage lung adenocarcinoma. SIGNIFICANCE: Analysis of a spectrum of subsolid pulmonary nodules by single-cell RNA sequencing provides insights into the immune regulation and cell-cell interactions in the tumor microenvironment during early lung tumor development.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Pulmonares , Nódulos Pulmonares Múltiplos , Humanos , Monitorização Imunológica , Tomografia Computadorizada por Raios X/métodos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Neoplasias Pulmonares/patologia , Adenocarcinoma/genética , Adenocarcinoma/patologia , Microambiente Tumoral
11.
Proc Natl Acad Sci U S A ; 120(28): e2305236120, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37399400

RESUMO

Plasma cell-free DNA (cfDNA) is a noninvasive biomarker for cell death of all organs. Deciphering the tissue origin of cfDNA can reveal abnormal cell death because of diseases, which has great clinical potential in disease detection and monitoring. Despite the great promise, the sensitive and accurate quantification of tissue-derived cfDNA remains challenging to existing methods due to the limited characterization of tissue methylation and the reliance on unsupervised methods. To fully exploit the clinical potential of tissue-derived cfDNA, here we present one of the largest comprehensive and high-resolution methylation atlas based on 521 noncancer tissue samples spanning 29 major types of human tissues. We systematically identified fragment-level tissue-specific methylation patterns and extensively validated them in orthogonal datasets. Based on the rich tissue methylation atlas, we develop the first supervised tissue deconvolution approach, a deep-learning-powered model, cfSort, for sensitive and accurate tissue deconvolution in cfDNA. On the benchmarking data, cfSort showed superior sensitivity and accuracy compared to the existing methods. We further demonstrated the clinical utilities of cfSort with two potential applications: aiding disease diagnosis and monitoring treatment side effects. The tissue-derived cfDNA fraction estimated from cfSort reflected the clinical outcomes of the patients. In summary, the tissue methylation atlas and cfSort enhanced the performance of tissue deconvolution in cfDNA, thus facilitating cfDNA-based disease detection and longitudinal treatment monitoring.


Assuntos
Ácidos Nucleicos Livres , Aprendizado Profundo , Humanos , Ácidos Nucleicos Livres/genética , Metilação de DNA , Biomarcadores , Regiões Promotoras Genéticas , Biomarcadores Tumorais/genética
12.
Signal Transduct Target Ther ; 8(1): 155, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37069149

RESUMO

Loss of function of the von Hippel-Lindau (VHL) tumor suppressor gene is a hallmark of clear cell renal cell carcinoma (ccRCC). The importance of heterogeneity in the loss of this tumor suppressor has been under reported. To study the impact of intratumoral VHL heterogeneity observed in human ccRCC, we engineered VHL gene deletion in four RCC models, including a new primary tumor cell line derived from an aggressive metastatic case. The VHL gene-deleted (VHL-KO) cells underwent epithelial-to-mesenchymal transition (EMT) and exhibited increased motility but diminished proliferation and tumorigenicity compared to the parental VHL-expressing (VHL+) cells. Renal tumors with either VHL+ or VHL-KO cells alone exhibit minimal metastatic potential. Combined tumors displayed rampant lung metastases, highlighting a novel cooperative metastatic mechanism. The poorly proliferative VHL-KO cells stimulated the proliferation, EMT, and motility of neighboring VHL+ cells. Periostin (POSTN), a soluble protein overexpressed and secreted by VHL non-expressing (VHL-) cells, promoted metastasis by enhancing the motility of VHL-WT cells and facilitating tumor cell vascular escape. Genetic deletion or antibody blockade of POSTN dramatically suppressed lung metastases in our preclinical models. This work supports a new strategy to halt the progression of ccRCC by disrupting the critical metastatic crosstalk between heterogeneous cell populations within a tumor.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Neoplasias Pulmonares , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Neoplasias Renais/genética , Neoplasias Renais/patologia , Genes Supressores de Tumor , Neoplasias Pulmonares/genética
13.
Nature ; 615(7953): 712-719, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36922590

RESUMO

Mitochondria are critical to the governance of metabolism and bioenergetics in cancer cells1. The mitochondria form highly organized networks, in which their outer and inner membrane structures define their bioenergetic capacity2,3. However, in vivo studies delineating the relationship between the structural organization of mitochondrial networks and their bioenergetic activity have been limited. Here we present an in vivo structural and functional analysis of mitochondrial networks and bioenergetic phenotypes in non-small cell lung cancer (NSCLC) using an integrated platform consisting of positron emission tomography imaging, respirometry and three-dimensional scanning block-face electron microscopy. The diverse bioenergetic phenotypes and metabolic dependencies we identified in NSCLC tumours align with distinct structural organization of mitochondrial networks present. Further, we discovered that mitochondrial networks are organized into distinct compartments within tumour cells. In tumours with high rates of oxidative phosphorylation (OXPHOSHI) and fatty acid oxidation, we identified peri-droplet mitochondrial networks wherein mitochondria contact and surround lipid droplets. By contrast, we discovered that in tumours with low rates of OXPHOS (OXPHOSLO), high glucose flux regulated perinuclear localization of mitochondria, structural remodelling of cristae and mitochondrial respiratory capacity. Our findings suggest that in NSCLC, mitochondrial networks are compartmentalized into distinct subpopulations that govern the bioenergetic capacity of tumours.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Metabolismo Energético , Neoplasias Pulmonares , Mitocôndrias , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/ultraestrutura , Ácidos Graxos/metabolismo , Glucose/metabolismo , Gotículas Lipídicas/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/ultraestrutura , Microscopia Eletrônica , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Fosforilação Oxidativa , Fenótipo , Tomografia por Emissão de Pósitrons
14.
bioRxiv ; 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36778362

RESUMO

Increased utilization of glucose is a hallmark of cancer. Several studies are investigating the efficacy of glucose restriction by glucose transporter blockade or glycolysis inhibition. However, the adaptations of cancer cells to glucose restriction are unknown. Here, we report the discovery that glucose restriction in lung adenocarcinoma (LUAD) induces cancer cell de-differentiation, leading to a more aggressive phenotype. Glucose deprivation causes a reduction in alpha-ketoglutarate (αKG), leading to attenuated activity of αKG-dependent histone demethylases and histone hypermethylation. We further show that this de-differentiated phenotype depends on unbalanced EZH2 activity, causing inhibition of prolyl-hydroxylase PHD3 and increased expression of hypoxia inducible factor 1α (HIF1α), triggering epithelial to mesenchymal transition. Finally, we identified an HIF1α-dependent transcriptional signature with prognostic significance in human LUAD. Our studies further current knowledge of the relationship between glucose metabolism and cell differentiation in cancer, characterizing the epigenetic adaptation of cancer cells to glucose deprivation and identifying novel targets to prevent the development of resistance to therapies targeting glucose metabolism.

15.
Cancer Discov ; 12(11): 2626-2645, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36098652

RESUMO

Tumor-infiltrating B and plasma cells (TIB) are prevalent in lung adenocarcinoma (LUAD); however, they are poorly characterized. We performed paired single-cell RNA and B-cell receptor (BCR) sequencing of 16 early-stage LUADs and 47 matching multiregion normal tissues. By integrative analysis of ∼50,000 TIBs, we define 12 TIB subsets in the LUAD and adjacent normal ecosystems and demonstrate extensive remodeling of TIBs in LUADs. Memory B cells and plasma cells (PC) were highly enriched in tumor tissues with more differentiated states and increased frequencies of somatic hypermutation. Smokers exhibited markedly elevated PCs and PCs with distinct differentiation trajectories. BCR clonotype diversity increased but clonality decreased in LUADs, smokers, and with increasing pathologic stage. TIBs were mostly localized within CXCL13+ lymphoid aggregates, and immune cell sources of CXCL13 production evolved with LUAD progression and included elevated fractions of CD4 regulatory T cells. This study provides a spatial landscape of TIBs in early-stage LUAD. SIGNIFICANCE: While TIBs are highly enriched in LUADs, they are poorly characterized. This study provides a much-needed understanding of the transcriptional, clonotypic states and phenotypes of TIBs, unraveling their potential roles in the immunopathology of early-stage LUADs and constituting a road map for the development of TIB-targeted immunotherapies for the treatment of this morbid malignancy. This article is highlighted in the In This Issue feature, p. 2483.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Pulmonares , Humanos , Plasmócitos/patologia , Ecossistema , Neoplasias Pulmonares/genética , Adenocarcinoma de Pulmão/genética , Adenocarcinoma/genética , Prognóstico
16.
Nat Commun ; 13(1): 5566, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175411

RESUMO

Early cancer detection by cell-free DNA faces multiple challenges: low fraction of tumor cell-free DNA, molecular heterogeneity of cancer, and sample sizes that are not sufficient to reflect diverse patient populations. Here, we develop a cancer detection approach to address these challenges. It consists of an assay, cfMethyl-Seq, for cost-effective sequencing of the cell-free DNA methylome (with > 12-fold enrichment over whole genome bisulfite sequencing in CpG islands), and a computational method to extract methylation information and diagnose patients. Applying our approach to 408 colon, liver, lung, and stomach cancer patients and controls, at 97.9% specificity we achieve 80.7% and 74.5% sensitivity in detecting all-stage and early-stage cancer, and 89.1% and 85.0% accuracy for locating tissue-of-origin of all-stage and early-stage cancer, respectively. Our approach cost-effectively retains methylome profiles of cancer abnormalities, allowing us to learn new features and expand to other cancer types as training cohorts grow.


Assuntos
Ácidos Nucleicos Livres , Neoplasias Gástricas , Ácidos Nucleicos Livres/genética , Análise Custo-Benefício , Detecção Precoce de Câncer , Epigenoma , Humanos , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética
17.
J Immunother Cancer ; 10(5)2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35640927

RESUMO

Immunotherapy has transformed lung cancer care in recent years. In addition to providing durable responses and prolonged survival outcomes for a subset of patients with heavily pretreated non-small cell lung cancer (NSCLC), immune checkpoint inhibitors (ICIs)- either as monotherapy or in combination with other ICIs or chemotherapy-have demonstrated benefits in first-line therapy for advanced disease, the neoadjuvant and adjuvant settings, as well as in additional thoracic malignancies such as small-cell lung cancer (SCLC) and mesothelioma. Challenging questions remain, however, on topics including therapy selection, appropriate biomarker-based identification of patients who may derive benefit, the use of immunotherapy in special populations such as people with autoimmune disorders, and toxicity management. Patient and caregiver education and support for quality of life (QOL) is also important to attain maximal benefit with immunotherapy. To provide guidance to the oncology community on these and other important concerns, the Society for Immunotherapy of Cancer (SITC) convened a multidisciplinary panel of experts to develop a clinical practice guideline (CPG). This CPG represents an update to SITC's 2018 publication on immunotherapy for the treatment of NSCLC, and is expanded to include recommendations on SCLC and mesothelioma. The Expert Panel drew on the published literature as well as their clinical experience to develop recommendations for healthcare professionals on these important aspects of immunotherapeutic treatment for lung cancer and mesothelioma, including diagnostic testing, treatment planning, immune-related adverse events, and patient QOL considerations. The evidence- and consensus-based recommendations in this CPG are intended to give guidance to cancer care providers using immunotherapy to treat patients with lung cancer or mesothelioma.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Carcinoma de Pequenas Células do Pulmão , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Humanos , Imunoterapia/efeitos adversos , Neoplasias Pulmonares/tratamento farmacológico , Mesotelioma/terapia , Qualidade de Vida , Carcinoma de Pequenas Células do Pulmão/etiologia , Carcinoma de Pequenas Células do Pulmão/terapia
18.
Commun Biol ; 5(1): 407, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35501466

RESUMO

Epithelial-mesenchymal Transition (EMT) is a multi-step process that involves cytoskeletal rearrangement. Here, developing and using an image quantification tool, Statistical Parametrization of Cell Cytoskeleton (SPOCC), we have identified an intermediate EMT state with a specific cytoskeletal signature. We have been able to partition EMT into two steps: (1) initial formation of transverse arcs and dorsal stress fibers and (2) their subsequent conversion to ventral stress fibers with a concurrent alignment of fibers. Using the Orientational Order Parameter (OOP) as a figure of merit, we have been able to track EMT progression in live cells as well as characterize and quantify their cytoskeletal response to drugs. SPOCC has improved throughput and is non-destructive, making it a viable candidate for studying a broad range of biological processes. Further, owing to the increased stiffness (and by inference invasiveness) of the intermediate EMT phenotype compared to mesenchymal cells, our work can be instrumental in aiding the search for future treatment strategies that combat metastasis by specifically targeting the fiber alignment process.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias Pulmonares , Citoesqueleto , Transição Epitelial-Mesenquimal/fisiologia , Humanos , Neoplasias Pulmonares/genética , Microtúbulos , Fenótipo
19.
Clin Cancer Res ; 28(9): 1841-1853, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35149536

RESUMO

PURPOSE: Cell-free DNA (cfDNA) offers a noninvasive approach to monitor cancer. Here we develop a method using whole-exome sequencing (WES) of cfDNA for simultaneously monitoring the full spectrum of cancer treatment outcomes, including minimal residual disease (MRD), recurrence, evolution, and second primary cancers. EXPERIMENTAL DESIGN: Three simulation datasets were generated from 26 patients with cancer to benchmark the detection performance of MRD/recurrence and second primary cancers. For further validation, cfDNA samples (n = 76) from patients with cancer (n = 35) with six different cancer types were used for performance validation during various treatments. RESULTS: We present a cfDNA-based cancer monitoring method, named cfTrack. Taking advantage of the broad genome coverage of WES data, cfTrack can sensitively detect MRD and cancer recurrence by integrating signals across known clonal tumor mutations of a patient. In addition, cfTrack detects tumor evolution and second primary cancers by de novo identifying emerging tumor mutations. A series of machine learning and statistical denoising techniques are applied to enhance the detection power. On the simulation data, cfTrack achieved an average AUC of 99% on the validation dataset and 100% on the independent dataset in detecting recurrence in samples with tumor fractions ≥0.05%. In addition, cfTrack yielded an average AUC of 88% in detecting second primary cancers in samples with tumor fractions ≥0.2%. On real data, cfTrack accurately monitors tumor evolution during treatment, which cannot be accomplished by previous methods. CONCLUSIONS: Our results demonstrated that cfTrack can sensitively and specifically monitor the full spectrum of cancer treatment outcomes using exome-wide mutation analysis of cfDNA.


Assuntos
Ácidos Nucleicos Livres , Segunda Neoplasia Primária , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Ácidos Nucleicos Livres/genética , Exoma/genética , Humanos , Mutação , Recidiva Local de Neoplasia/genética , Neoplasia Residual/genética , Segunda Neoplasia Primária/genética , Resultado do Tratamento , Sequenciamento do Exoma
20.
JTO Clin Res Rep ; 2(11): 100242, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34806054

RESUMO

INTRODUCTION: To assess the technical feasibility and safety of repeated percutaneous computed tomography (CT)-guided transthoracic biopsies and intratumoral injections of gene-modified dendritic cells in metastatic NSCLC. METHODS: A total of 15 patients with 15 NSCLC lesions measuring greater than 1.0 cm underwent two cycles of intratumoral biopsies and CCL21 dendritic cell injections separated by 7 days. All needle placements and injections were done under CT guidance. Clinical and imaging follow-up was done approximately 4 weeks after the first procedure. Safety and feasibility were determined as: (1) safety and feasibility similar to that of single-needle biopsy, and (2) an absence of serious adverse events defined as grade greater than or equal to three according to the National Cancer Institute Common Terminology Criteria for Adverse Events version 5.0. RESULTS: A total of 30 percutaneous, transthoracic intratumoral biopsies and injections into the lung cancer were performed, two cycles (at d 0 and 7) received by each patient (311 biopsies and 96 intratumoral injections). All percutaneous cases achieved technical success with respect to needle placement for both biopsy and injection of CCL21 dendritic cells. Only minor complications were observed (grade <3), including pneumothorax (n = 10, 33%) and small postbiopsy hemorrhage (n = 2, 7%). Pneumothorax was moderate (n = 1) or trace (n = 9), with resolution of the moderate pneumothorax after manual aspiration without chest tube placement. No patient required chest tube placement. No other complications or serious adverse effects related to the biopsy or dendritic cell injection were noted. All patients were in stable condition after up to 4 hours in the recovery unit and were discharged home on the same day. No procedure-related complications were observed on imaging or clinical follow-up at 4 weeks. CONCLUSIONS: Repeated percutaneous, transthoracic CT-guided biopsies and intratumoral gene-modified cell-based immunotherapy injections into lung cancers are technically feasible, safe, and reproducible. There were no procedure-related serious (defined as grade ≥3) adverse events.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...