Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Histopathology ; 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004603

RESUMO

AIMS: Over 50% of breast cancer cases are "Human epidermal growth factor receptor 2 (HER2) low breast cancer (BC)", characterized by HER2 immunohistochemistry (IHC) scores of 1+ or 2+ alongside no amplification on fluorescence in situ hybridization (FISH) testing. The development of new anti-HER2 antibody-drug conjugates (ADCs) for treating HER2-low breast cancers illustrates the importance of accurately assessing HER2 status, particularly HER2-low breast cancer. In this study we evaluated the performance of a deep-learning (DL) model for the assessment of HER2, including an assessment of the causes of discordances of HER2-Null between a pathologist and the DL model. We specifically focussed on aligning the DL model rules with the ASCO/CAP guidelines, including stained cells' staining intensity and completeness of membrane staining. METHODS AND RESULTS: We trained a DL model on a multicentric cohort of breast cancer cases with HER2-IHC scores (n = 299). The model was validated on two independent multicentric validation cohorts (n = 369 and n = 92), with all cases reviewed by three senior breast pathologists. All cases underwent a thorough review by three senior breast pathologists, with the ground truth determined by a majority consensus on the final HER2 score among the pathologists. In total, 760 breast cancer cases were utilized throughout the training and validation phases of the study. The model's concordance with the ground truth (ICC = 0.77 [0.68-0.83]; Fisher P = 1.32e-10) is higher than the average agreement among the three senior pathologists (ICC = 0.45 [0.17-0.65]; Fisher P = 2e-3). In the two validation cohorts, the DL model identifies 95% [93% - 98%] and 97% [91% - 100%] of HER2-low and HER2-positive tumours, respectively. Discordant results were characterized by morphological features such as extended fibrosis, a high number of tumour-infiltrating lymphocytes, and necrosis, whilst some artefacts such as nonspecific background cytoplasmic stain in the cytoplasm of tumour cells also cause discrepancy. CONCLUSION: Deep learning can support pathologists' interpretation of difficult HER2-low cases. Morphological variables and some specific artefacts can cause discrepant HER2-scores between the pathologist and the DL model.

2.
Nat Commun ; 14(1): 6695, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932267

RESUMO

Mismatch Repair Deficiency (dMMR)/Microsatellite Instability (MSI) is a key biomarker in colorectal cancer (CRC). Universal screening of CRC patients for MSI status is now recommended, but contributes to increased workload for pathologists and delayed therapeutic decisions. Deep learning has the potential to ease dMMR/MSI testing and accelerate oncologist decision making in clinical practice, yet no comprehensive validation of a clinically approved tool has been conducted. We developed MSIntuit, a clinically approved artificial intelligence (AI) based pre-screening tool for MSI detection from haematoxylin-eosin (H&E) stained slides. After training on samples from The Cancer Genome Atlas (TCGA), a blind validation is performed on an independent dataset of 600 consecutive CRC patients. Inter-scanner reliability is studied by digitising each slide using two different scanners. MSIntuit yields a sensitivity of 0.96-0.98, a specificity of 0.47-0.46, and an excellent inter-scanner agreement (Cohen's κ: 0.82). By reaching high sensitivity comparable to gold standard methods while ruling out almost half of the non-MSI population, we show that MSIntuit can effectively serve as a pre-screening tool to alleviate MSI testing burden in clinical practice.


Assuntos
Neoplasias Colorretais , Instabilidade de Microssatélites , Humanos , Inteligência Artificial , Reprodutibilidade dos Testes , Detecção Precoce de Câncer , Neoplasias Colorretais/genética , Reparo de Erro de Pareamento de DNA
3.
Nat Med ; 29(1): 135-146, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36658418

RESUMO

Triple-negative breast cancer (TNBC) is a rare cancer, characterized by high metastatic potential and poor prognosis, and has limited treatment options. The current standard of care in nonmetastatic settings is neoadjuvant chemotherapy (NACT), but treatment efficacy varies substantially across patients. This heterogeneity is still poorly understood, partly due to the paucity of curated TNBC data. Here we investigate the use of machine learning (ML) leveraging whole-slide images and clinical information to predict, at diagnosis, the histological response to NACT for early TNBC women patients. To overcome the biases of small-scale studies while respecting data privacy, we conducted a multicentric TNBC study using federated learning, in which patient data remain secured behind hospitals' firewalls. We show that local ML models relying on whole-slide images can predict response to NACT but that collaborative training of ML models further improves performance, on par with the best current approaches in which ML models are trained using time-consuming expert annotations. Our ML model is interpretable and is sensitive to specific histological patterns. This proof of concept study, in which federated learning is applied to real-world datasets, paves the way for future biomarker discovery using unprecedentedly large datasets.


Assuntos
Terapia Neoadjuvante , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Terapia Neoadjuvante/métodos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Resultado do Tratamento
4.
Arthritis Res Ther ; 23(1): 262, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663440

RESUMO

BACKGROUND: The identification of patients with knee osteoarthritis (OA) likely to progress rapidly in terms of structure is critical to facilitate the development of disease-modifying drugs. METHODS: Using 9280 knee magnetic resonance (MR) images (3268 patients) from the Osteoarthritis Initiative (OAI) database , we implemented a deep learning method to predict, from MR images and clinical variables including body mass index (BMI), further cartilage degradation measured by joint space narrowing at 12 months. RESULTS: Using COR IW TSE images, our classification model achieved a ROC AUC score of 65%. On a similar task, trained radiologists obtained a ROC AUC score of 58.7% highlighting the difficulty of the classification task. Additional analyses conducted in parallel to predict pain grade evaluated by the WOMAC pain index achieved a ROC AUC score of 72%. Attention maps provided evidence for distinct specific areas as being relevant in those two predictive models, including the medial joint space for JSN progression and the intra-articular space for pain prediction. CONCLUSIONS: This feasibility study demonstrates the interest of deep learning applied to OA, with a potential to support even trained radiologists in the challenging task of identifying patients with a high-risk of disease progression.


Assuntos
Cartilagem Articular , Aprendizado Profundo , Osteoartrite do Joelho , Progressão da Doença , Humanos , Articulação do Joelho , Imageamento por Ressonância Magnética , Osteoartrite do Joelho/diagnóstico por imagem
5.
Nat Commun ; 12(1): 634, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33504775

RESUMO

The SARS-COV-2 pandemic has put pressure on intensive care units, so that identifying predictors of disease severity is a priority. We collect 58 clinical and biological variables, and chest CT scan data, from 1003 coronavirus-infected patients from two French hospitals. We train a deep learning model based on CT scans to predict severity. We then construct the multimodal AI-severity score that includes 5 clinical and biological variables (age, sex, oxygenation, urea, platelet) in addition to the deep learning model. We show that neural network analysis of CT-scans brings unique prognosis information, although it is correlated with other markers of severity (oxygenation, LDH, and CRP) explaining the measurable but limited 0.03 increase of AUC obtained when adding CT-scan information to clinical variables. Here, we show that when comparing AI-severity with 11 existing severity scores, we find significantly improved prognosis performance; AI-severity can therefore rapidly become a reference scoring approach.


Assuntos
COVID-19/diagnóstico , COVID-19/fisiopatologia , Aprendizado Profundo , Redes Neurais de Computação , Tomografia Computadorizada por Raios X/métodos , Inteligência Artificial , COVID-19/classificação , Humanos , Modelos Biológicos , Análise Multivariada , Prognóstico , Radiologistas , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...