Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958594

RESUMO

Self-splicing ribozymes are small ribonucleic acid (RNA) enzymes that catalyze their own cleavage through a transphosphoesterification reaction. While this process is involved in some specific steps of viral RNA replication and splicing, it is also of importance in the context of the (putative) first autocatalytic RNA-based systems that could have preceded the emergence of modern life. The uncatalyzed phosphoester bond formation is thermodynamically very unfavorable, and many experimental studies have focused on understanding the molecular features of catalysis in these ribozymes. However, chemical reaction paths are short-lived and not easily characterized by experimental approaches, so molecular simulation approaches appear as an ideal tool to unveil the molecular details of the reaction. Here, we focus on the model hairpin ribozyme. We show that identifying a relevant initial conformation for reactivity studies, which is frequently overlooked in mixed quantum-classical studies that predominantly concentrate on the chemical reaction itself, can be highly challenging. These challenges stem from limitations in both available experimental structures (which are chemically altered to prevent self-cleavage) and the accuracy of force fields, together with the necessity for comprehensive sampling. We show that molecular dynamics simulations, combined with extensive conformational phase space exploration with Hamiltonian replica-exchange simulations, enable us to characterize the relevant conformational basins of the minimal hairpin ribozyme in the ligated state prior to self-cleavage. We find that what is usually considered a canonical reactive conformation with active site geometries and hydrogen-bond patterns that are optimal for the addition-elimination reaction with general acid/general base catalysis is metastable and only marginally populated. The thermodynamically stable conformation appears to be consistent with the expectations of a mechanism that does not require the direct participation of ribozyme residues in the reaction. While these observations may suffer from forcefield inaccuracies, all investigated forcefields lead to the same conclusions upon proper sampling, contrasting with previous investigations on shorter timescales suggesting that at least one reparametrization of the Amber99 forcefield allowed to stabilize aligned active site conformations. Our study demonstrates that identifying the most pertinent reactant state conformation holds equal importance alongside the accurate determination of the thermodynamics and kinetics of the chemical steps of the reaction.

2.
J Phys Chem Lett ; 15(16): 4351-4358, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38619551

RESUMO

Water molecules are essential to determine the structure of nucleic acids and mediate their interactions with other biomolecules. Here, we characterize the hydration dynamics of analogous DNA and RNA double helices with unprecedented resolution and elucidate the molecular origin of their differences: first, the localization of the slowest hydration water molecules─in the minor groove in DNA, next to phosphates in RNA─and second, the markedly distinct hydration dynamics of the two phosphate oxygen atoms OR and OS in RNA. Using our Extended Jump Model for water reorientation, we assess the relative importance of previously proposed factors, including the local topography, water bridges, and the presence of ions. We show that the slow hydration dynamics at RNA OR sites is not due to bridging water molecules but is caused by both the larger excluded volume and the stronger initial H-bond next to OR, due to the different phosphate orientations in A-form double helical RNA.


Assuntos
DNA , Ligação de Hidrogênio , Conformação de Ácido Nucleico , RNA , Água , DNA/química , RNA/química , Água/química , Fosfatos/química , Simulação de Dinâmica Molecular
3.
Phys Chem Chem Phys ; 26(4): 3208-3218, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38193286

RESUMO

Neutron scattering and molecular dynamics studies were performed on a concentrated aqueous tetramethylammonium (TMA) chloride solution to gain insight into the hydration shell structure of TMA, which is relevant for understanding its behavior in biological contexts of, e.g., properties of phospholipid membrane headgroups or interactions between DNA and histones. Specifically, neutron diffraction with isotopic substitution experiments were performed on TMA and water hydrogens to extract the specific correlation between hydrogens in TMA (HTMA) and hydrogens in water (HW). Classical molecular dynamics simulations were performed to help interpret the experimental neutron scattering data. Comparison of the hydration structure and simulated neutron signals obtained with various force field flavors (e.g. overall charge, charge distribution, polarity of the CH bonds and geometry) allowed us to gain insight into how sensitive the TMA hydration structure is to such changes and how much the neutron signal can capture them. We show that certain aspects of the hydration, such as the correlation of the hydrogen on TMA to hydrogen on water, showed little dependence on the force field. In contrast, other correlations, such as the ion-ion interactions, showed more marked changes. Strikingly, the neutron scattering signal cannot discriminate between different hydration patterns. Finally, ab initio molecular dynamics was used to examine the three-dimensional hydration structure and thus to benchmark force field simulations. Overall, while neutron scattering has been previously successfully used to improve force fields, in the particular case of TMA we show that it has only limited value to fully determine the hydration structure, with other techniques such as ab initio MD being of a significant help.

4.
J Phys Chem B ; 126(22): 4022-4034, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35608554

RESUMO

The binding of divalent cations to the ubiquitous phosphate group is essential for a number of key biological processes, such as DNA compaction, RNA folding, or interactions of some proteins with membranes. Yet, probing their binding sites, modes, and associated binding free energy is a challenge for both experiments and simulations. In simulations, standard force fields strongly overestimate the interaction between phosphate groups and divalent cations. Here, we examine how different strategies to include electronic polarization effects in force fields─implicitly, through the use of scaled charges or pair-specific Lennard-Jones parameters, or explicitly, with the polarizable force fields Drude and AMOEBA─capture the interactions of a model phosphate compound, dimethyl phosphate, with calcium and magnesium divalent cations. We show that both implicit and explicit approaches, when carefully parameterized, are successful in capturing the overall binding free energy and that common trends emerge from the comparison of different simulation approaches. Overall, the binding is very moderate, slightly weaker for Ca2+ than Mg2+, and the solvent-shared ion pair is slightly more stable than the contact monodentate ion pair. The bidentate ion pair is higher in energy (or even fully unstable for Mg2+). Our results thus suggest practical ways to capture the divalent cations with biomolecular phosphate groups in complex biochemical systems. In particular, the computational efficiency of implicit models makes them ideally suited for large-scale simulations of biological assemblies, with improved accuracy compared to state-of-the-art fixed-charge force fields.


Assuntos
Simulação de Dinâmica Molecular , Fosfatos , Cátions Bivalentes/química , Eletrônica , Termodinâmica
5.
Phys Chem Chem Phys ; 22(41): 24014-24027, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33078182

RESUMO

In spite of the biological importance of the binding of Zn2+, Ca2+, and Mg2+ to the carboxylate group, cation-acetate binding affinities and binding modes remain actively debated. Here, we report the first use of Raman multivariate curve resolution (Raman-MCR) vibrational spectroscopy to obtain self-consistent free and bound metal acetate spectra and one-to-one binding constants, without the need to invoke any a priori assumptions regarding the shapes of the corresponding vibrational bands. The experimental results, combined with classical molecular dynamics simulations with a force field effectively accounting for electronic polarization via charge scaling and ab initio simulations, indicate that the measured binding constants pertain to direct (as opposed to water separated) ion pairing. The resulting binding constants do not scale with cation size, as the binding constant to Zn2+ is significantly larger than that to either Mg2+ or Ca2+, although Zn2+ and Mg2+ have similar radii that are about 25% smaller than Ca2+. Remaining uncertainties in the metal acetate binding free energies are linked to fundamental ambiguities associated with identifying the range of structures pertaining to non-covalently bound species.

6.
J Phys Chem Lett ; 10(12): 3254-3259, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31125523

RESUMO

The molecular structure and strength of a model salt bridge between a guanidinium cation (side chain group of arginine) and the acetate carboxylic group in an aqueous solution is characterized by a combination of neutron diffraction with isotopic substitution and molecular dynamics simulations. The present neutron scattering experiments provide direct information about ion pairing in the solution. At the same time, these measurements are used to assess the quality of the force field employed in the simulation. We show that a standard nonpolarizable force field overestimates the strength of salt bridges. In contrast, accounting for electronic polarization effects via charge scaling allows to quantitatively reproduce the experiment. Such simulations are used to quantify the weak character of a fully hydrated salt bridge. Finally, on top of the canonical hydrogen-bonding binding mode, we uncover another interaction motif involving an out-of-plane hydrophobic contact of the acetate methyl group with the guanidinium cation.

7.
J Phys Chem B ; 122(44): 10069-10076, 2018 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-30153414

RESUMO

The oligomeric state of the storage form of human insulin in the pancreas, which may be affected by several endogenous components of ß-cell storage granules such as arginine, is not known. Here, the effect of arginine on insulin oligomerization is investigated independently by protein crystallography, molecular dynamics simulations, and capillary electrophoresis. The combined results point to a strong effect of ionic strength on insulin assembly. Molecular simulations and electrophoretic measurements at low/mM salt concentrations show no significant effect of arginine on insulin aggregation. In contrast, crystallographic data at high/molar ionic strength indicate inhibition of insulin hexamerization by arginine due to its binding at the site relevant for intermolecular contacts, which was also observed in MD simulations. Our results thus bracket the in vivo situation in pancreatic ß-cell storage granules, where the ionic strength is estimated to be in the hundreds of millimolar to submolar range. The present findings add to a molecular understanding of in vivo insulin oligomerization and storage, with additional implications for insulin stability in arginine-rich injections.


Assuntos
Arginina/metabolismo , Insulina/metabolismo , Arginina/química , Cristalografia por Raios X , Eletroforese Capilar , Humanos , Insulina/química , Simulação de Dinâmica Molecular , Concentração Osmolar , Ligação Proteica , Multimerização Proteica
8.
J Chem Phys ; 148(22): 222813, 2018 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-29907056

RESUMO

We present a combination of force field and ab initio molecular dynamics simulations together with neutron scattering experiments with isotopic substitution that aim at characterizing ion hydration and pairing in aqueous calcium chloride and formate/acetate solutions. Benchmarking against neutron scattering data on concentrated solutions together with ion pairing free energy profiles from ab initio molecular dynamics allows us to develop an accurate calcium force field which accounts in a mean-field way for electronic polarization effects via charge rescaling. This refined calcium parameterization is directly usable for standard molecular dynamics simulations of processes involving this key biological signaling ion.

9.
J Phys Chem B ; 122(21): 5640-5648, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29360367

RESUMO

In the present study, we characterize the binding of divalent cations to insulin in aqueous salt solutions by means of capillary electrophoresis and molecular dynamics simulations. The results show a strong pH dependence. At low pH, at which all the carboxylate groups are protonated and the protein has an overall positive charge, all the cations exhibit only weak and rather unspecific interactions with insulin. In contrast, at close to neutral pH, when all the carboxylate groups are deprotonated and negatively charged, the charge-neutralizing effect of magnesium, calcium, and zinc, in particular, on the electrophoretic mobility of insulin is significant. This is also reflected in the results of molecular dynamics simulations showing accumulation of cations at the protein surface, which becomes smaller in magnitude upon effective inclusion of electronic polarization via charge rescaling.


Assuntos
Cátions Bivalentes/química , Insulina/química , Simulação de Dinâmica Molecular , Cálcio/química , Cátions Bivalentes/metabolismo , Eletroforese Capilar , Humanos , Concentração de Íons de Hidrogênio , Insulina/metabolismo , Magnésio/química , Ligação Proteica , Água/química , Zinco/química
10.
J Phys Chem B ; 122(13): 3296-3306, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29116789

RESUMO

Magnesium and zinc dications possess the same charge and have an almost identical size, yet they behave very differently in aqueous solutions and play distinct biological roles. It is thus crucial to identify the origins of such different behaviors and to assess to what extent they can be captured by force-field molecular dynamics simulations. In this work, we combine neutron scattering experiments in a specific mixture of H2O and D2O (the so-called null water) with ab initio molecular dynamics simulations to probe the difference in the hydration structure and ion-pairing properties of chloride solutions of the two cations. The obtained data are used as a benchmark to develop a scaled-charge force field for Mg2+ that includes electronic polarization in a mean field way. We show that using this electronic continuum correction we can describe aqueous magnesium chloride solutions well. However, in aqueous zinc chloride specific interaction terms between the ions need to be introduced to capture ion pairing quantitatively.

11.
J Phys Chem B ; 121(49): 11189-11197, 2017 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-29200289

RESUMO

We use ab initio molecular dynamics simulation to study the effect of hydrophobic groups on the dynamics of water molecules in aqueous solutions of trimethylamine N-oxide (TMAO). We show that hydrophobic groups induce a moderate (<2-fold) slowdown of water reorientation and hydrogen-bond dynamics in dilute solutions, but that this slowdown rapidly increases with solute concentration. In addition, the slowdown factor is found to vary very little with temperature, thus suggesting an entropic origin. All of these results are in quantitative agreement with prior classical molecular dynamics simulations and with the previously suggested excluded-volume model. The hydrophilic TMAO headgroup is found to affect water dynamics more strongly than the hydrophobic moiety, and the magnitude of this slowdown is very sensitive to the strength of the water-solute hydrogen-bond.

12.
J Phys Chem B ; 121(29): 7027-7041, 2017 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-28675789

RESUMO

Enzymes are widely used in nonaqueous solvents to catalyze non-natural reactions. While experimental measurements showed that the solvent nature has a strong effect on the reaction kinetics, the molecular details of the catalytic mechanism in nonaqueous solvents have remained largely elusive. Here we study the transesterification reaction catalyzed by the paradigm subtilisin Carlsberg serine protease in an organic apolar solvent. The rate-limiting acylation step involves a proton transfer between active-site residues and the nucleophilic attack of the substrate to form a tetrahedral intermediate. We design the first coupled valence-bond state model that simultaneously describes both reactions in the enzymatic active site. We develop a new systematic procedure to parametrize this model on high-level ab initio QM/MM free energy calculations that account for the molecular details of the active site and for both substrate and protein conformational fluctuations. Our calculations show that the reaction energy barrier changes dramatically with the solvent and protein conformational fluctuations. We find that the mechanism of the tetrahedral intermediate formation during the acylation step is similar to that determined under aqueous conditions, and that the proton transfer and nucleophilic attack reactions occur concertedly. We identify the reaction coordinate to be mostly due to the rearrangement of some residual water molecules close to the active site.


Assuntos
Modelos Biológicos , Simulação de Dinâmica Molecular , Compostos Orgânicos/química , Prótons , Solventes/química , Subtilisina/química , Acilação , Catálise , Domínio Catalítico , Ativação Enzimática , Cinética , Subtilisina/metabolismo , Água/química
13.
J Am Chem Soc ; 138(24): 7610-20, 2016 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-27240107

RESUMO

The reorientation and hydrogen-bond dynamics of water molecules within the hydration shell of a B-DNA dodecamer, which are of interest for many of its biochemical functions, are investigated via molecular dynamics simulations and an analytic jump model, which provide valuable new molecular level insights into these dynamics. Different sources of heterogeneity in the hydration shell dynamics are determined. First, a pronounced spatial heterogeneity is found at the DNA interface and explained via the jump model by the diversity in local DNA interfacial topographies and DNA-water H-bond interactions. While most of the hydration shell is moderately retarded with respect to the bulk, some water molecules confined in the narrow minor groove exhibit very slow dynamics. An additional source of heterogeneity is found to be caused by the DNA conformational fluctuations, which modulate the water dynamics. The groove widening aids the approach of, and the jump to, a new water H-bond partner. This temporal heterogeneity is especially strong in the minor groove, where groove width fluctuations occur on the same time scale as the water H-bond rearrangements, leading to a strong dynamical disorder. The usual simplifying assumption that hydration shell dynamics is much faster than DNA dynamics is thus not valid; our results show that biomolecular conformational fluctuations are essential to facilitate the water motions and accelerate the hydration dynamics in confined groove sites.


Assuntos
DNA de Forma B/química , Água/química , Sequência de Bases , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico
14.
J Phys Chem B ; 119(26): 8406-18, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26054933

RESUMO

A wide range of geometric order parameters have been suggested to characterize the local structure of liquid water and its tetrahedral arrangement, but their respective merits have remained elusive. Here, we consider a series of popular order parameters and analyze molecular dynamics simulations of water, in the bulk and in the hydration shell of a hydrophobic solute, at 298 and 260 K. We show that these parameters are weakly correlated and probe different distortions, for example the angular versus radial disorders. We first combine these complementary descriptions to analyze the structural rearrangements leading to the density maximum in liquid water. Our results reveal no sign of a heterogeneous mixture and show that the density maximum arises from the depletion in interstitial water molecules upon cooling. In the hydration shell of the hydrophobic moiety of propanol, the order parameters suggest that the water local structure is similar to that in the bulk, with only a very weak depletion in ordered configurations, thus confirming the absence of any iceberg-type structure. Finally, we show that the main structural fluctuations that affect water reorientation dynamics in the bulk are angular distortions, which we explain by the jump hydrogen-bond exchange mechanism.

15.
J Chem Phys ; 141(22): 22D529, 2014 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-25494800

RESUMO

The hydration layer surrounding a protein plays an essential role in its biochemical function and consists of a heterogeneous ensemble of water molecules with different local environments and different dynamics. What determines the degree of dynamical heterogeneity within the hydration shell and how this changes with temperature remains unclear. Here, we combine molecular dynamics simulations and analytic modeling to study the hydration shell structure and dynamics of a typical globular protein, ubiquitin, and of the spruce budworm hyperactive antifreeze protein over the 230-300 K temperature range. Our results show that the average perturbation induced by both proteins on the reorientation dynamics of water remains moderate and changes weakly with temperature. The dynamical heterogeneity arises mostly from the distribution of protein surface topographies and is little affected by temperature. The ice-binding face of the antifreeze protein induces a short-ranged enhancement of water structure and a greater slowdown of water reorientation dynamics than the non-ice-binding faces whose effect is similar to that of ubiquitin. However, the hydration shell of the ice-binding face remains less tetrahedral than the bulk and is not "ice-like". We finally show that the hydrogen bonds between water and the ice-binding threonine residues are particularly strong due to a steric confinement effect, thereby contributing to the strong binding of the antifreeze protein on ice crystals.


Assuntos
Proteínas Anticongelantes/química , Proteínas de Insetos/química , Lepidópteros/química , Ubiquitina/química , Água/química , Animais , Humanos , Ligação de Hidrogênio , Gelo/análise , Simulação de Dinâmica Molecular
16.
J Chem Phys ; 141(18): 18C523, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25399188

RESUMO

The dynamics of water are dramatically modified upon confinement in nanoscale hydrophilic silica pores. In particular, the OH reorientation dynamics of the interfacial water are non-exponential and dramatically slowed relative to the bulk liquid. A detailed analysis of molecular dynamics simulations is carried out to elucidate the microscopic origins of this behavior. The results are analyzed in the context of the extended jump model for water that describes the reorientation as a combination of hydrogen-bond exchanges, or jumps, and rotation of intact hydrogen bonds, with the former representing the dominant contribution. Within this model, the roles of surface and dynamical heterogeneities are considered by spatially resolving the hydrogen-bond jump dynamics into individual sites on the silica pore surface. For each site the dynamics is nearly mono-exponential, indicating that dynamical heterogeneity is at most a minor influence, while the distribution of these individual site jump times is broad. The non-exponential dynamics can also not be attributed to enthalpic contributions to the barriers to hydrogen-bond exchanges. Two entropic effects related to the surface roughness are found to explain the retarded and diverse dynamics: those associated with the approach of a new hydrogen-bond acceptor and with the breaking of the initial hydrogen-bond.

17.
J Phys Chem B ; 118(6): 1574-83, 2014 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-24460522

RESUMO

The perturbation induced by a hydrophobic solute on water dynamics is essential in many biochemical processes, but its mechanism and magnitude are still debated. A stringent test of the different proposed pictures is provided by recent NMR measurements by Qvist and Halle (J. Am. Chem. Soc. 2008, 130, 10345-10353) which showed that, unexpectedly, the perturbation changes in a non-monotonic fashion when the solution is cooled below room temperature. Here we perform and analyze molecular dynamics simulations of a small paradigm amphiphilic solute, trimethylamine N-oxide (TMAO), in dilute aqueous solutions over the 218-350 K temperature range. We first show that our simulations properly reproduce the non-monotonic temperature dependence. We then develop a model which combines our previously suggested entropic excluded-volume effect with a perturbation factor arising from the difference between local structural fluctuations in the shell and the bulk. Our model provides a detailed molecular understanding of the hydrophobic perturbation over the full temperature range investigated. It shows that the excluded-volume factor brings a dominant temperature-independent contribution to the perturbation at all temperatures, and provides a very good approximation at room temperature. The non-monotonic temperature dependence of the perturbation is shown to arise from the structural factor and mostly from relative shifts between the shell and bulk distributions of local structures, whose amplitude remains very small compared to the widths of those distributions.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Metilaminas/química , Simulação de Dinâmica Molecular , Temperatura , Água/química , Cinética , Conformação Molecular , Termodinâmica
18.
Chem Soc Rev ; 42(13): 5672-83, 2013 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-23612685

RESUMO

The dynamics of water molecules within the hydration shell surrounding a biomolecule can have a crucial influence on its biochemical function. Characterizing their properties and the extent to which they differ from those of bulk water have thus been long-standing questions. Following a tutorial approach, we review the recent advances in this field and the different approaches which have probed the dynamical perturbation experienced by water in the vicinity of proteins or DNA. We discuss the molecular factors causing this perturbation, and describe how they change with temperature. We finally present more biologically relevant cases beyond the dilute aqueous situation. A special focus is on the jump model for water reorientation and hydrogen bond rearrangement.


Assuntos
DNA/química , Proteínas/química , Água/química , Bioquímica , Ligação de Hidrogênio , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...