Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-480751

RESUMO

The ongoing evolution of SARS-CoV-2 has resulted in the emergence of Omicron, which displays striking immune escape potential. Many of its mutations localize to the spike protein ACE2 receptor-binding domain, annulling the neutralizing activity of most therapeutic monoclonal antibodies. Here we describe a receptor-blocking human monoclonal antibody, 87G7, that retains ultrapotent neutralization against SARS-CoV-2 variants including the Alpha, Beta, Gamma, Delta and Omicron (BA.1/BA.2) Variants-of-Concern (VOCs). Structural analysis reveals that 87G7 targets a patch of hydrophobic residues in the ACE2-binding site that are highly conserved in SARS-CoV-2 variants, explaining its broad neutralization capacity. 87G7 protects mice and/or hamsters against challenge with all current SARS-CoV-2 VOCs. Our findings may aid the development of sustainable antibody-based strategies against COVID-19 that are more resilient to SARS-CoV-2 antigenic diversity. One sentence summaryA human monoclonal antibody confers broad neutralization and protection against Omicron and other SARS-CoV-2 variants

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-346916

RESUMO

The coronavirus spike glycoprotein, located on the virion surface, is the key mediator of cell entry. As such, it is an attractive target for the development of protective antibodies and vaccines. Here we describe two human monoclonal antibodies, 1.6C7 and 28D9, that display a remarkable cross-reactivity against distinct species from three Betacoronavirus subgenera, capable of binding the spike proteins of SARS-CoV and SARS-CoV-2, MERS-CoV and the endemic human coronavirus HCoV-OC43. Both antibodies, derived from immunized transgenic mice carrying a human immunoglobulin repertoire, blocked MERS-CoV infection in cells, whereas 28D9 also showed weak cross-neutralizing potential against HCoV-OC43, SARS-CoV and SARS-CoV-2 in a neutralization-sensitive virus pseudotyping system, but not against authentic virus. Both cross-reactive monoclonal antibodies were found to target the stem helix in the spike protein S2 fusion subunit which, in the prefusion conformation of trimeric spike, forms a surface exposed membrane-proximal helical bundle, that is antibody-accessible. We demonstrate that administration of these antibodies in mice protects from a lethal MERS-CoV challenge in both prophylactic and/or therapeutic models. Collectively, these antibodies delineate a conserved, immunogenic and vulnerabe site on the spike protein which spurs the development of broad-range diagnostic, preventive and therapeutic measures against coronaviruses.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-264630

RESUMO

Effective clinical intervention strategies for COVID-19 are urgently needed. Although several clinical trials have evaluated the use of convalescent plasma containing virus-neutralizing antibodies, the effectiveness has not been proven. We show that hamsters treated with a high dose of human convalescent plasma or a monoclonal antibody were protected against weight loss showing reduced pneumonia and pulmonary virus replication compared to control animals. However, a ten-fold lower dose of convalescent plasma showed no protective effect. Thus, variable and relatively low levels of virus neutralizing antibodies in convalescent plasma may limit their use for effective antiviral therapy, favouring concentrated, purified (monoclonal) antibodies.

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-987958

RESUMO

The emergence of the novel human coronavirus SARS-CoV-2 in Wuhan, China has caused a worldwide epidemic of respiratory disease (COVID-19). Vaccines and targeted therapeutics for treatment of this disease are currently lacking. Here we report a human monoclonal antibody that neutralizes SARS-CoV-2 (and SARS-CoV). This cross-neutralizing antibody targets a communal epitope on these viruses and offers potential for prevention and treatment of COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...