Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Environ ; 35(8): 1483-99, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22394204

RESUMO

Nitric oxide (NO) regulates a wide range of plant processes from development to environmental adaptation. In this study, we investigated the production and/or function of NO in Arabidopsis thaliana leaf discs and plants elicited by oligogalacturonides (OGs) and challenged with Botrytis cinerea. We provided evidence that OGs triggered a fast and long lasting NO production which was Ca(2+) dependent and involved nitrate reductase (NR). Accordingly, OGs triggered an increase of both NR activity and transcript accumulation. NO production was also sensitive to the mammalian NO synthase inhibitor L-NAME. Intriguingly, we showed that L-NAME affected NO production by interfering with NR activity, thus questioning the mechanisms of how this compound impairs NO synthesis in plants. We further demonstrated that NO modulates RBOHD-mediated reactive oxygen species (ROS) production and participates in the regulation of OG-responsive genes such as anionic peroxidase (PER4) and a ß-1,3-glucanase. Mutant plants impaired in PER4 and ß-1,3-glucanase, as well as Col-0 plants treated with the NO scavenger cPTIO, were more susceptible to B. cinerea. Taken together, our investigation deciphers part of the mechanisms linking NO production, NO-induced effects and basal resistance to B. cinerea.


Assuntos
Arabidopsis/imunologia , Botrytis/patogenicidade , Ácidos Hexurônicos/metabolismo , Óxido Nítrico/biossíntese , Botrytis/imunologia , Cálcio/metabolismo , Transporte de Íons , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...