Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953784

RESUMO

Exfoliation of graphite and the discovery of the unique properties of graphene─graphite's single layer─have raised significant attention to layered compounds as potential precursors to 2D materials with applications in optoelectronics, spintronics, sensors, and solar cells. In this work, a new orthorhombic polymorph of yttrium bromide, oC16-YBr3 was synthesized from yttrium and CBr4 in a laser-heated diamond anvil cell at 45 GPa and 3000 K. The structure of oC16-YBr3 was solved and refined using in situ synchrotron single-crystal X-ray diffraction. At high pressure, it can be described as a 3D framework of YBr9 polyhedra, but upon decompression below 15 GPa, the structure motif changes to layered, with layers comprising edge-sharing YBr8 polyhedra weakly bonded by van der Waals interactions. The layered oC16-YBr3 material can be recovered to ambient conditions, and according to Perdew-Burke-Ernzerhof-density functional theory calculations, it exhibits semiconductor properties with a band gap that is highly sensitive to pressure. This polymorph possesses a low exfoliation energy of 0.30 J/m2. Our results expand the list of layered trivalent rare-earth metal halides and provide insights into how high pressure alters their structural motifs and physical properties.

2.
J Am Chem Soc ; 146(26): 18161-18171, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38916483

RESUMO

Inorganic ternary metal-C-N compounds with covalently bonded C-N anions encompass important classes of solids such as cyanides and carbodiimides, well known at ambient conditions and composed of [CN]- and [CN2]2- anions, as well as the high-pressure formed guanidinates featuring [CN3]5- anion. At still higher pressures, carbon is expected to be 4-fold coordinated by nitrogen atoms, but hitherto, such CN4-built anions are missing. In this study, four polycarbonitride compounds (LaCN3, TbCN3, CeCN5, and TbCN5) are synthesized in laser-heated diamond anvil cells at pressures between 90 and 111 GPa. Synchrotron single-crystal X-ray diffraction (SCXRD) reveals that their crystal structures are built of a previously unobserved anionic single-bonded carbon-nitrogen three-dimensional (3D) framework consisting of CN4 tetrahedra connected via di- or oligo-nitrogen linkers. A crystal-chemical analysis demonstrates that these polycarbonitride compounds have similarities to lanthanide silicon phosphides. Decompression experiments reveal the existence of LaCN3 and CeCN5 compounds over a very large pressure range. Density functional theory (DFT) supports these discoveries and provides further insight into the stability and physical properties of the synthesized compounds.

3.
Nat Commun ; 15(1): 2855, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565539

RESUMO

Metal carbides are known to contain small carbon units similar to those found in the molecules of methane, acetylene, and allene. However, for numerous binary systems ab initio calculations predict the formation of unusual metal carbides with exotic polycarbon units, [C6] rings, and graphitic carbon sheets at high pressure (HP). Here we report the synthesis and structural characterization of a HP-CaC2 polymorph and a Ca3C7 compound featuring deprotonated polyacene-like and para-poly(indenoindene)-like nanoribbons, respectively. We also demonstrate that carbides with infinite chains of fused [C6] rings can exist even at conditions of deep planetary interiors ( ~ 140 GPa and ~3300 K). Hydrolysis of high-pressure carbides may provide a possible abiotic route to polycyclic aromatic hydrocarbons in Universe.

4.
Nat Commun ; 15(1): 2244, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472167

RESUMO

Nitrogen catenation under high pressure leads to the formation of polynitrogen compounds with potentially unique properties. The exploration of the entire spectrum of poly- and oligo-nitrogen moieties is still in its earliest stages. Here, we report on four novel scandium nitrides, Sc2N6, Sc2N8, ScN5, and Sc4N3, synthesized by direct reaction between yttrium and nitrogen at 78-125 GPa and 2500 K in laser-heated diamond anvil cells. High-pressure synchrotron single-crystal X-ray diffraction reveals that in the crystal structures of the nitrogen-rich Sc2N6, Sc2N8, and ScN5 phases nitrogen is catenated forming previously unknown N66- and N86- units and ∞ 2 ( N 5 3 - ) anionic corrugated 2D-polynitrogen layers consisting of fused N12 rings. Density functional theory calculations, confirming the dynamical stability of the synthesized compounds, show that Sc2N6 and Sc2N8 possess an anion-driven metallicity, while ScN5 is an indirect semiconductor. Sc2N6, Sc2N8, and ScN5 solids are promising high-energy-density materials with calculated volumetric energy density, detonation velocity, and detonation pressure higher than those of TNT.

5.
Sci Adv ; 10(11): eadl5416, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38478619

RESUMO

The yttrium-hydrogen system has gained attention because of near-ambient temperature superconductivity reports in yttrium hydrides at high pressures. We conducted a study using synchrotron single-crystal x-ray diffraction (SCXRD) at 87 to 171 GPa, resulting in the discovery of known (two YH3 phases) and five previously unknown yttrium hydrides. These were synthesized in diamond anvil cells by laser heating yttrium with hydrogen-rich precursors-ammonia borane or paraffin oil. The arrangements of yttrium atoms in the crystal structures of new phases were determined on the basis of SCXRD, and the hydrogen content estimations based on empirical relations and ab initio calculations revealed the following compounds: Y3H11, Y2H9, Y4H23, Y13H75, and Y4H25. The study also uncovered a carbide (YC2) and two yttrium allotropes. Complex phase diversity, variable hydrogen content in yttrium hydrides, and their metallic nature, as revealed by ab initio calculations, underline the challenges in identifying superconducting phases and understanding electronic transitions in high-pressure synthesized materials.

6.
Adv Mater ; 36(3): e2308030, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37822038

RESUMO

Carbon nitrides featuring three-dimensional frameworks of CN4 tetrahedra are one of the great aspirations of materials science, expected to have a hardness greater than or comparable to diamond. After more than three decades of efforts to synthesize them, no unambiguous evidence of their existence has been delivered. Here, the high-pressure high-temperature synthesis of three carbon-nitrogen compounds, tI14-C3 N4 , hP126-C3 N4 , and tI24-CN2 , in laser-heated diamond anvil cells, is reported. Their structures are solved and refined using synchrotron single-crystal X-ray diffraction. Physical properties investigations show that these strongly covalently bonded materials, ultra-incompressible and superhard, also possess high energy density, piezoelectric, and photoluminescence properties. The novel carbon nitrides are unique among high-pressure materials, as being produced above 100 GPa they are recoverable in air at ambient conditions.

7.
Angew Chem Int Ed Engl ; 63(7): e202318214, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38100520

RESUMO

The elements hydrogen, carbon, and nitrogen are among the most abundant in the solar system. Still, little is known about the ternary compounds these elements can form under the high-pressure and high-temperature conditions found in the outer planets' interiors. These materials are also of significant research interest since they are predicted to feature many desirable properties such as high thermal conductivity and hardness due to strong covalent bonding networks. In this study, the high-pressure high-temperature reaction behavior of malononitrile H2 C(CN)2 , dicyandiamide (H2 N)2 C=NCN, and melamine (C3 N3 )(NH2 )3 was investigated in laser-heated diamond anvil cells. Two previously unknown compounds, namely α-C(NH)2 and ß-C(NH)2 , have been synthesized and found to have fully sp3 -hybridized carbon atoms. α-C(NH)2 crystallizes in a distorted ß-cristobalite structure, while ß-C(NH)2 is built from previously unknown imide-bridged 2,4,6,8,9,10-hexaazaadamantane units, which form two independent interpenetrating diamond-like networks. Their stability domains and compressibility were studied, for which supporting density functional theory calculations were performed.

8.
Front Chem ; 11: 1258389, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37867996

RESUMO

Silicate perovskite, with the mineral name bridgmanite, is the most abundant mineral in the Earth's lower mantle. We investigated crystal structures and equations of state of two perovskite-type Fe3+-rich phases, FeMg0.5Si0.5O3 and Fe0.5Mg0.5Al0.5Si0.5O3, at high pressures, employing single-crystal X-ray diffraction and synchrotron Mössbauer spectroscopy. We solved their crystal structures at high pressures and found that the FeMg0.5Si0.5O3 phase adopts a novel monoclinic double-perovskite structure with the space group of P21/n at pressures above 12 GPa, whereas the Fe0.5Mg0.5Al0.5Si0.5O3 phase adopts an orthorhombic perovskite structure with the space group of Pnma at pressures above 8 GPa. The pressure induces an iron spin transition for Fe3+ in a (Fe0.7,Mg0.3)O6 octahedral site of the FeMg0.5Si0.5O3 phase at pressures higher than 40 GPa. No iron spin transition was observed for the Fe0.5Mg0.5Al0.5Si0.5O3 phase as all Fe3+ ions are located in bicapped prism sites, which have larger volumes than an octahedral site of (Al0.5,Si0.5)O6.

9.
Nat Commun ; 14(1): 6207, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798268

RESUMO

The allotropy of solid molecular nitrogen is the consequence of a complex interplay between fundamental intermolecular as well as intramolecular interactions. Understanding the underlying physical mechanisms hinges on knowledge of the crystal structures of these molecular phases. That is especially true for ζ-N2, key to shed light on nitrogen's polymerization. Here, we perform single-crystal X-ray diffraction on laser-heated N2 samples at 54, 63, 70 and 86 GPa and solve and refine the hitherto unknown structure of ζ-N2. In its monoclinic unit cell (space group C2/c), 16 N2 molecules are arranged in a configuration similar to that of ε-N2. The structure model provides an explanation for the previously identified Raman and infrared lattice and vibrational modes of ζ-N2. Density functional theory calculations give an insight into the gradual delocalization of electronic density from intramolecular bonds to intermolecular space and suggest a possible pathway towards nitrogen's polymerization.

10.
Angew Chem Int Ed Engl ; 62(47): e202311516, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37768278

RESUMO

A series of isostructural Ln3 O2 (CN3 ) (Ln=La, Eu, Gd, Tb, Ho, Yb) oxoguanidinates was synthesized under high-pressure (25-54 GPa) high-temperature (2000-3000 K) conditions in laser-heated diamond anvil cells. The crystal structure of this novel class of compounds was determined via synchrotron single-crystal X-ray diffraction (SCXRD) as well as corroborated by X-ray absorption near edge structure (XANES) measurements and density functional theory (DFT) calculations. The Ln3 O2 (CN3 ) solids are composed of the hitherto unknown CN3 5- guanidinate anion-deprotonated guanidine. Changes in unit cell volumes and compressibility of Ln3 O2 (CN3 ) (Ln=La, Eu, Gd, Tb, Ho, Yb) compounds are found to be dictated by the lanthanide contraction phenomenon. Decompression experiments show that Ln3 O2 (CN3 ) compounds are recoverable to ambient conditions. The stabilization of the CN3 5- guanidinate anion at ambient conditions provides new opportunities in inorganic and organic synthetic chemistry.

11.
JACS Au ; 3(6): 1634-1641, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37388691

RESUMO

The field of polyhalogen chemistry, specifically polyhalogen anions (polyhalides), is rapidly evolving. Here, we present the synthesis of three sodium halides with unpredicted chemical compositions and structures (tP10-Na2Cl3, hP18-Na4Cl5, and hP18-Na4Br5), a series of isostructural cubic cP8-AX3 halides (NaCl3, KCl3, NaBr3, and KBr3), and a trigonal potassium chloride (hP24-KCl3). The high-pressure syntheses were realized at 41-80 GPa in diamond anvil cells laser-heated at about 2000 K. Single-crystal synchrotron X-ray diffraction (XRD) provided the first accurate structural data for the symmetric trichloride Cl3- anion in hP24-KCl3 and revealed the existence of two different types of infinite linear polyhalogen chains, [Cl]∞n- and [Br]∞n-, in the structures of cP8-AX3 compounds and in hP18-Na4Cl5 and hP18-Na4Br5. In Na4Cl5 and Na4Br5, we found unusually short, likely pressure-stabilized, contacts between sodium cations. Ab initio calculations support the analysis of structures, bonding, and properties of the studied halogenides.

12.
Front Chem ; 11: 1210081, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37383952

RESUMO

Chemical reactions between dysprosium and carbon were studied in laser-heated diamond anvil cells at pressures of 19, 55, and 58 GPa and temperatures of ∼2500 K. In situ single-crystal synchrotron X-ray diffraction analysis of the reaction products revealed the formation of novel dysprosium carbides, Dy4C3 and Dy3C2, and dysprosium sesquicarbide Dy2C3 previously known only at ambient conditions. The structure of Dy4C3 was found to be closely related to that of dysprosium sesquicarbide Dy2C3 with the Pu2C3-type structure. Ab initio calculations reproduce well crystal structures of all synthesized phases and predict their compressional behavior in agreement with our experimental data. Our work gives evidence that high-pressure synthesis conditions enrich the chemistry of rare earth metal carbides.

13.
Dalton Trans ; 52(17): 5563-5574, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37013382

RESUMO

We synthesized single and polycrystals of iron oxide with an unconventional Fe4O5 stoichiometry under high-pressure high-temperature (HP-HT) conditions. The crystals of Fe4O5 had a CaFe3O5-type structure composed of linear chains of iron with octahedral and trigonal-prismatic oxygen coordinations. We investigated the electronic properties of this mixed-valence oxide using several experimental techniques, including measurements of electrical resistivity, the Hall effect, magnetoresistance, and thermoelectric power (Seebeck coefficient), X-ray absorption near edge spectroscopy (XANES), reflectance and absorption spectroscopy, and single-crystal X-ray diffraction. Under ambient conditions, the single crystals of Fe4O5 demonstrated a semimetal electrical conductivity with nearly equal partial contributions of electrons and holes (σn ≈ σp), in line with the nominal average oxidation state of iron as Fe2.5+. This finding suggests that both the octahedral and trigonal-prismatic iron cations contribute to the electrical conductivity of Fe4O5via an Fe2+/Fe3+ polaron hopping mechanism. A moderate deterioration of crystal quality shifted the dominant electrical conductivity to n-type and considerably worsened the conductivity. Thus, alike magnetite, Fe4O5 with equal numbers of Fe2+ and Fe3+ ions can serve as a prospective model for other mixed-valence transition-metal oxides. In particular, it could help in the understanding of the electronic properties of other recently discovered mixed-valence iron oxides with unconventional stoichiometries, many of which are not recoverable to ambient conditions; it can also help in designing novel more complex mixed-valence iron oxides.

14.
Nat Chem ; 15(5): 641-646, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36879075

RESUMO

The recent high-pressure synthesis of pentazolates and the subsequent stabilization of the aromatic [N5]- anion at atmospheric pressure have had an immense impact on nitrogen chemistry. Other aromatic nitrogen species have also been actively sought, including the hexaazabenzene N6 ring. Although a variety of configurations and geometries have been proposed based on ab initio calculations, one that stands out as a likely candidate is the aromatic hexazine anion [N6]4-. Here we present the synthesis of this species, realized in the high-pressure potassium nitrogen compound K9N56 formed at high pressures (46 and 61 GPa) and high temperature (estimated to be above 2,000 K) by direct reaction between nitrogen and KN3 in a laser-heated diamond anvil cell. The complex structure of K9N56-composed of 520 atoms per unit cell-was solved based on synchrotron single-crystal X-ray diffraction and corroborated by density functional theory calculations. The observed hexazine anion [N6]4- is planar and proposed to be aromatic.

15.
Nat Commun ; 13(1): 7517, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36473837

RESUMO

Ferropericlase (Mg,Fe)O is the second most abundant mineral in Earth's lower mantle and a common inclusion found in subcratonic diamonds. Pyrolitic mantle has Mg# (100 × Mg/(Mg+Fe)) ~89. However, ferropericlase inclusions in diamonds show a broad range of Mg# between 12 and 93. Here we use Synchrotron Mössbauer Source (SMS) spectroscopy and single-crystal X-ray diffraction to determine the iron oxidation state and structure of two magnesiowüstite and three ferropericlase inclusions in diamonds from São Luiz, Brazil. Inclusion Mg#s vary between 16.1 and 84.5. Ferropericlase inclusions contain no ferric iron within the detection limit of SMS, while both magnesiowüstite inclusions show the presence of monocrystalline magnesioferrite ((Mg,Fe)Fe3+2O4) with an estimated 47-53 wt% Fe2O3. We argue that the wide range of Fe concentrations observed in (Mg,Fe)O inclusions in diamonds and the appearance of magnesioferrite result from oxidation of ferropericlase triggered by the introduction of subducted material into sublithospheric mantle.

16.
Chemistry ; 28(62): e202203123, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36323532

RESUMO

Invited for the cover of this issue are Dominique Laniel (University of Edinburgh), Florian Trybel (University of Linköping), and their colleagues. The image depicts a bridge built of the newly discovered δ-P3 N5 solid with the structure featuring PN6 units, a previously missing connection between the carbon group elements nitrides and chalcogens nitrides. Read the full text of the article at 10.1002/chem.202201998.

17.
Nat Commun ; 13(1): 6987, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36385117

RESUMO

The lanthanum-hydrogen system has attracted significant attention following the report of superconductivity in LaH10 at near-ambient temperatures and high pressures. Phases other than LaH10 are suspected to be synthesized based on both powder X-ray diffraction and resistivity data, although they have not yet been identified. Here, we present the results of our single-crystal X-ray diffraction studies on this system, supported by density functional theory calculations, which reveal an unexpected chemical and structural diversity of lanthanum hydrides synthesized in the range of 50 to 180 GPa. Seven lanthanum hydrides were produced, LaH3, LaH~4, LaH4+δ, La4H23, LaH6+δ, LaH9+δ, and LaH10+δ, and the atomic coordinates of lanthanum in their structures determined. The regularities in rare-earth element hydrides unveiled here provide clues to guide the search for other synthesizable hydrides and candidate high-temperature superconductors. The hydrogen content variability in lanthanum hydrides and the samples' phase heterogeneity underline the challenges related to assessing potentially superconducting phases and the nature of electronic transitions in high-pressure hydrides.

18.
J Appl Crystallogr ; 55(Pt 5): 1383-1391, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36249501

RESUMO

This paper presents the Domain Auto Finder (DAFi) program and its application to the analysis of single-crystal X-ray diffraction (SC-XRD) data from multiphase mixtures of microcrystalline solids and powders. Superposition of numerous reflections originating from a large number of single-crystal domains of the same and/or different (especially unknown) phases usually precludes the sorting of reflections coming from individual domains, making their automatic indexing impossible. The DAFi algorithm is designed to quickly find subsets of reflections from individual domains in a whole set of SC-XRD data. Further indexing of all found subsets can be easily performed using widely accessible crystallographic packages. As the algorithm neither requires a priori crystallographic information nor is limited by the number of phases or individual domains, DAFi is powerful software to be used for studies of multiphase polycrystalline and microcrystalline (powder) materials. The algorithm is validated by testing on X-ray diffraction data sets obtained from real samples: a multi-mineral basalt rock at ambient conditions and products of the chemical reaction of yttrium and nitro-gen in a laser-heated diamond anvil cell at 50 GPa. The high performance of the DAFi algorithm means it can be used for processing SC-XRD data online during experiments at synchrotron facilities.

19.
Chem Mater ; 34(18): 8138-8152, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36186668

RESUMO

Transition metal borides are known due to their attractive mechanical, electronic, refractive, and other properties. A new class of rhenium borides was identified by synchrotron single-crystal X-ray diffraction experiments in laser-heated diamond anvil cells between 26 and 75 GPa. Recoverable to ambient conditions, compounds rhenium triboride (ReB3) and rhenium tetraboride (ReB4) consist of close-packed single layers of rhenium atoms alternating with boron networks built from puckered hexagonal layers, which link short bonded (∼1.7 Å) axially oriented B2 dumbbells. The short and incompressible Re-B and B-B bonds oriented along the hexagonal c-axis contribute to low axial compressibility comparable with the linear compressibility of diamond. Sub-millimeter samples of ReB3 and ReB4 were synthesized in a large-volume press at pressures as low as 33 GPa and used for material characterization. Crystals of both compounds are metallic and hard (Vickers hardness, H V = 34(3) GPa). Geometrical, crystal-chemical, and theoretical analysis considerations suggest that potential ReB x compounds with x > 4 can be based on the same principle of structural organization as in ReB3 and ReB4 and possess similar mechanical and electronic properties.

20.
J Synchrotron Radiat ; 29(Pt 5): 1167-1179, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36073875

RESUMO

A gasket is an important constituent of a diamond anvil cell (DAC) assembly, responsible for the sample chamber stability at extreme conditions for X-ray diffraction studies. In this work, we studied the performance of gaskets made of metallic glass Fe0.79Si0.07B0.14 in a number of high-pressure X-ray diffraction (XRD) experiments in DACs equipped with conventional and toroidal-shape diamond anvils. The experiments were conducted in either axial or radial geometry with X-ray beams of micrometre to sub-micrometre size. We report that Fe0.79Si0.07B0.14 metallic glass gaskets offer a stable sample environment under compression exceeding 1 Mbar in all XRD experiments described here, even in those involving small-molecule gases (e.g. Ne, H2) used as pressure-transmitting media or in those with laser heating in a DAC. Our results emphasize the material's importance for a great number of delicate experiments conducted under extreme conditions. They indicate that the application of Fe0.79Si0.07B0.14 metallic glass gaskets in XRD experiments for both axial and radial geometries substantially improves various aspects of megabar experiments and, in particular, the signal-to-noise ratio in comparison to that with conventional gaskets made of Re, W, steel or other crystalline metals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...